MOVING.DOC



First Impression redraw speeds support animation of data within your chart. This file discusses the techniques necessary to do this in your applications.



Project Overview

The essential code in this project is actually quite small. Supporting seven chart types requires large Select Case statements that make up the bulk of the code. The essential elements are SetChartTypeAndSize which formats the chart when a new chart type is selected and the code under the Start button which animates the data.



How To Get a Smooth Animation

Use BLIT mode. This is different than the normal draw mode and results in a faster redraw. The penalty is a less faithful rendering of the chart. Since we won't be printing the chart and moving data is less critically analyzed, this is a worthwhile tradeoff.



Keep your data set small. Animating your chart is means incrementally changing the data. The more data you have to manipulate, the longer it will take to manipulate and render. Too much data usually makes for a cluttered chart and people may be overwhelmed by the chart. 



Simplify your chart. The less there is to draw, the faster you can redraw. This includes datapoint labels, axis scale, titles or anything that isn't absolutely necessary. Of course the performance is going to depend on what's under the hood in your target platform. This will dictate how much detail you are allowed to include and still get an effective animation. Also remember that you want your viewer to concentrate on the data you are displaying. For a good chart design, remove irrelevent details and let the viewer focus on the point you are making.



The chart redraw occurs in the DoEvents statement. Plop this project into the Code Profiler and you will see that this statement consumes nearly all the execution time. DoEvents is used here because we want continuous movement. The Stop button click will be processed during DoEvents. If you have a fixed number of iterations, you won't need an interactive stop command and you can use the VtChart.Refresh method. This can help if your machine gets a lot of messages it will respond to in the DoEvents statement.



Why Use It

Flashy effects are often overdone. A little flash in the right place can be very effective. The goal is an effective presentation. You reveal data to the viewer to make a point and you don't want them distracted by irrelevant data or effects. Charts are excellent for displaying static data or showing trends. Animating your data definately falls in the showing trends catagory. A couple of scenarios come to mind. 



You have a 3D chart full of data - You are effectively using the X and Y axis as catagories for the data set. You want to show how this data will vary over time which requires normally requires another axis. Instead, you can animate this data and show how each element varies over time.



You have several line charts with a common variable - perhaps accumulated monies in different mutual funds according to return rates based on economic predicters. 



Lets not get too far off base. Lets say just about any chart or group of charts that have a common variable. Animating your data could make an effective presentation of the trend this data follows as the common variable changes.



How to Animate

The animation consists of changing data in the DataGrid and then drawing the chart. The type of change you make to the data depends on the data. In this example, new data is created and pushed in one end of the DataGrid and old data is pulled out of the other end. The VtChart.Plot.DataGrid object provides the fastest methods to manipulate data. The charts used here have 3 logical series that contain sine waves. Each of the waves is 90 degrees out of phase. The series are in columns so we define a DataGrid of the appropriate size, pull old data from row one, and put new data in the last row. More explicitly, lets assume a DataGrid that looks like



		1	2	3

	1	a	a	a

	2	b	b	b

	3	c	c	c

	4	d	d	d



Below is the syntax for MoveData



	MoveData Top:=, Left:=, Bottom:=, Right:=, OverOffset:=, DownOffset:=



For one iteration, we want to move rows 2, 3, and 4 up so they occupy rows 1, 2, and 3. The code to do this is



	Vtchart1.Plot.DataGrid.MoveData 2, 1, 4, 3, 0, -1



Now the DataGrid looks like:



		1	2	3

	1	b	b	b

	2	c	c	c

	3	d	d	d

	4



The next step is to put new data into row 4 with the SetData method which looks like



	SetData Row:=, Column:=, DataPoint:=, nullFlag:=



	Vtchart1.Plot.DataGrid.SetData 1, 1, newData, False



You iterate over the series count to fill the entire row. MoveData and SetData are extremely fast. If you have larger data sets or need to set the values of the entire DataGrid, a very convenient alternative is to use the Formula One spreadsheet. The chart has three properties that are used to connect it to Formula One. The procedure is:



	1. Set the range in the spreadsheet you want to chart.

	2. Turn on the link.



From then on, all changes in the spreadsheet are automatically updated in the chart. This is a lot like the Excel functionality. Another bonus is that you can store your data in a file or database and load it very quickly into Formula One. From there you can use spreadsheet functions to manipulate or sort the data. The alternative is to define an array to hold the data, populate it, fill the DataGrid with VtChart.CopyDataFromArray, apply some function to every member of your array, fill the DataGrid with VtChart.CopyDataFromArray, ad naseum. One note for this last method: You will need to define your array as a 2 dimmension array of doubles contrary to the object browser's help string which tells you to use a variant. This is how VB interprets the OCX definition but is not correct.

