DRILL1.DOC





First Impression can provide the sophistication you need, or the simplicity you desire to rapidly generate pleasing presentation tools. This example focuses on simplicity of code and rapid generation of presentation applications. Three techniques are presented to move you towards this end: using templates, pushing data into the DataGrid, and Data Drilling.





Templates


A template is a chart that you create, save in a file, and load at run time. This speeds your development time since you don't have to write the code that is needed to format the chart. It provides flexibility because you can easily change the chart appearance without having to change the code and recompile. The template sets all attributes that are common to the data you wish to present. In this example, three templates are used and only the data and the chart title are changed.





Filling the DataGrid


The First Impression DataGrid stores all data that will appear in the chart. There are several methods of manipulating this object such as SetData, MoveData, CopyDataTo/FromArray, and properties that affect the attributes of the DataGrid. A natural (and common) source for this data is a database. For this example we set queries in the RecordSource of a Data Control. The data is then moved into the First Impression DataGrid. Although your choice of data source may change (eg read into an array from a text file or from data aquisition hardware), the method for moving it into the DataGrid will be very similiar. 





A simple way to get a feel for the organization of data in the datagrid for a particular chart type is to pop open the DataGrid editor (right click on the chart, select Edit Chart Data or during runtime, right click on the chart and choose the DataGrid Editor). The focus of this project is rapid application development which usually caries a speed penalty. This is due mostly to the queries and the database. You could significantly speed up this demo by storing the data in Formula One and doing the data manipulation there. Since Formula One and First Impression can share a live link, you would not have to do data transfer at all - just set the range you wish to chart. The other speed enhancement is to format the chart with code instead of reading a file from disk.





Drilling for Data


Drilling for data is an excellent way to simplify the presentation of complex data. Briefly, this concept consists of presenting summary information, allowing the user to select an element of that summary, and then showing that item in more detail. This process continues to the depth the data demands or the depth you think is appropriate.





Limiting User Interaction


There are two ways to prevent user interaction: 





	Set AllowUserChanges to False and 


	Canceling the Selected and/or Activated events. 





We want the user to interact with some chart parts and not others so we choose the second method. In the top level chart, we want the user to select the drill item in the pie or in the legend. Since there is one Pie, the datapoint and the series represent one item. We drill in response to the series activated event so the user may also use the legend to select a CPU Vendor. The SecondLevelChart is a line chart and it is more convenient for them to select a datapoint that corresponds to a Model number. In this case we don't want the user to accidently select a series so AllowSeriesSelection is set to False. Note that these settings are stored in the template file. To make the code more explicit, we set both options immediately after loading the template. 





The next step is to cancel the Selected and Activated events we don't want to respond to. Note the Selected event is fired with a single mouse click and the Activated is fired with a double click. For the top level chart we respond to a SeriesActivated event and the SecondLevelChart Drills on a DataPointActivated event. Series and DataPoint Selected events can not be cancelled since that will inhibit the Activated event (can't get a double click if you can't get past the single click). Every other Selected event has the code Cancel = True in it. This will prevent dialogs from showing and the user accidently dragging a chart part into a custom location and altering the chart formatting.





Project Overview


This project centers around a 209 record database of computer chips and their specification. The first task is to present a useful summary of the data that allows the user to explore the database while insulating them from the complexity of the database and presenting information in a useful manner. As with most demos, the data and the need are contrived so focus on the techniques presented.





We assume the goal is to find out about the chips. The 209 records are for about 30 venders. We can use the first chart to present a list of venders and let the user uncover more data about a single vender. The first query is stored for speed since it is loaded in the Form Load and we want that to be as snappy as possible. The second query (and and first trick) will retrieve all Models from the selected Vendor and place Relative Performance, Cache Size, and Cycle Time in a line chart. The trick is in generation of the SQL statement that retrieves the information. If you are not a SQL wizard, you can still create wonderfully complex queries using a tool like the Access query builder. To generate the SQL, open the database using Access and create the query. Use the SQL view and copy the text to the VB project. Note that you must use two double quotes in a quoted string for the double quote to be visible in the string.





Notice that little code and time is spent with First Impression in this project. The first step in development was to examine the data and decide on what would be an effective presentation. Next, a little time was spent creating the chart templates. The third step was to generate the database code for retrieving the proper data set for each chart. I used a data control to simplify the coding and tied a datagrid to it so I could see the results of the queries while I worked. By leaving the First Impression user interface active while I worked I could refine the original rough templates as I saw what they looked like with live data. The last steps were to get the project looking good enough in the time allotted.





Tips


Before (and after) you become an expert with First Impression, use the object browser and help files to find examples for the code you wish to write. Note that the object API very closely resembles the user interface. As a rule of thumb, the VtChart object has all the properties you can see in the VB properties window and objects that apply to the entire chart and appear on the top level menu of the First Impression popup menu (without a submenu). Everything else is a member of the Plot object. Menu selections, Tabs and Frames in the user interface can guide you through the object hierarchy. For instance, to change the X axis title font you select the Axis... menu item, select Axis Title, pick an axis, click on the Font tab and then select the attribute. In the object hierarchy you would write something like 


	VtChart1.Plot.Axis(VtChAxisIDX).AxisTitle.VtFont.Size = 8


Note that there are several objects with a Vt prefix. VB does not allow use of certain keywords for objects such as Font, Color, and Picture - hence the Vt prefix.





You may notice that long text elements are clipped, especially when using different fonts, styles, or sizes. This happens because printer and screen font metrics are different. First Impression assumes printer metrics. If you experience problems with your chart, switch to screen metrics (on the Options tab under the General menu item). Remember to switch back for printing so that you have an optimal layout for the printer.


