
User’s Guide

Tidestone Technologies, Inc.

Formula One ActiveX
High performance software for manipulating data

For Microsoft
®

 Visual Basic 5.0
TM

 and 6.0
TM

, Visual C++ 5.0
TM

 and 6.0
TM

,
and Other Languages

Version 6.1

TM

Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express
written permission of Tidestone Technologies, Inc.

Copyright 1999 Tidestone Technologies, Inc. All rights reserved.

Formula One is a licensed trademark and Visual Components, First Impression, and VisualSpeller are
registered trademarks of Tidestone Technologies, Inc.

Microsoft, MS, MS-DOS, Visual Basic, and Windows are registered trademarks and Microsoft Access and
Microsoft Excel are trademarks of Microsoft Corporation in the USA and other countries.

Java, 100% Pure Java, and all Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc., in the U.S. and other countries.

PowerBuilder is a trademark of Sybase, Inc. or its subsidiaries.

TrueType is a registered trademark of Apple Computer, Inc.

All other company and product names mentioned may be trademarks or registered trademarks of the
companies with which they are associated.

The Tidestone License Agreement, included with the product, specifies the permitted and prohibited uses of
the product. Any unauthorized reproduction or use of the product, or breach of the terms and conditions of
the License Agreement, is forbidden. The Tidestone License Agreement sets forth the only warranties
applicable to the product and documentation. All warranty disclaimers and exclusions set forth therein
apply to the information contained in this document.

Published by:

Tidestone Technologies, Inc.
12980 Metcalf Avenue, Suite 300
Overland Park, Kansas 66213

(913)851-2200
(800)884-8665
(913)851-1390 fax

www.tidestone.com

Printed in the United States of America.
99/610.9

iii
Contents
Preface Overview .ix
New Features in Formula One . ix

Version 6.0 . ix
Version 6.1 . x

Installation . x
Installing the Product . xi
What Does The Installation Program Do? . xi
After Installation . xii
If you Experience Installation Problems . xii
Technical Support . xii
Documentation Conventions . xiii

Chapter 1 Getting Started . 1
Adding the ActiveX Control to Your Application . 1
Getting Started in Visual C++ . 1

Creating a Dialog, CFormView, or CView-Based Application 2
Creating Dialog Box-Based Applications . 2
Creating CFormView-Based Applications . 3
Creating CView-Based Applications . 3
Adding the Formula One Component to Your Project . 3
Adding the Component to Your Dialog or CFormView 4
Adding the Formula One Component to Your CView . 5
Working With Top-Level Properties and Methods in Visual C++ 6
Accessing Formula One Objects in Visual C++ . 6
Handling Events in your Dialog or CFormView in Visual C++ 7
Handling Events in your CView in Visual C++ . 7
Handling Printing and Previewing in Visual C++ . 7
Serializing the Control in Visual C++ . 7
Setting Properties in Visual C++ . 8
Setting Properties for a Control on a CView . 8

Getting Started in Visual Basic . 8
Adding the Component to your Visual Basic 5.0 or 6.0 Project 8
Setting Properties in Visual Basic 5.0 or 6.0 . 9

Getting Started in PowerBuilder . 9
OLE 2 Presentation Style . 10
Uniform Data Transfer Method . 14
Standalone Worksheet Method . 18
Using Formula One as a Worksheet in PowerBuilder 18

iv Formula One ActiveX User’s Guide
Working in PowerBuilder . 19
Upgrading Formula One . 20

Chapter 2 Introducing Formula One . 23
Working with API Objects . 23
Understanding Workbooks and Worksheets . 24
Introducing the Workbook Designer . 25
Using Workbooks, Views, and Invisible Workbooks . 25

Working With the F1Book Control . 26
Working With the F1BookView Control . 27
Using Attach Methods . 30
Controlling the Display of Workbook Areas . 30
Saving View or Invisible Workbook Information . 32

Reading and Writing Files . 32
Using BLOB access . 33
Writing out a Range of Cell Data . 34

Chapter 3 Overview of the Workbook Designer . 35
Launching the Workbook Designer . 36
Docking the Toolbars . 37
Using the Workbook Designer Menus . 37
Using the Workbook Designer Toolbars . 42

Chapter 4 Workbook Fundamentals . 45
Setting up Workbooks . 45

Displaying Parts of the Workbook Designer . 45
Setting the Default Font . 46

Setting Up the Color Palette . 48
Manipulating Worksheets . 48

Inserting Worksheets . 49
Selecting Worksheets . 50
Working with a Group of Worksheets . 51
Inserting Multiple Worksheets . 52
Deleting Worksheets . 54
Renaming Worksheets . 55
Setting Display Options for Worksheets . 55

Navigating Through Worksheets . 56
Navigating with the Mouse . 57
Navigating with the Keyboard . 58

Selecting Cells . 60
Selecting Cells with the Mouse . 60
Selecting Cells with Properties and Methods . 61

Selecting Rows and Columns . 61
Setting Selection Options . 62

Contents v
Chapter 5 Working With Data . 63
Understanding Worksheet Data Entry . 63

Adding the Formula Bar . 64
Entering Data with Properties . 64
Entering Multi-Line Data . 65

Understanding Worksheet Data Types . 66
Entering Constant Values . 66
Entering Formulas . 67

Using Formula Operators . 68
Understanding Cell References . 69
Understanding Worksheet Errors . 72
Displaying Formulas . 72

Built-In Worksheet Functions . 72
Understanding Functions . 73
Entering Functions . 73

Using Autofill Lists . 74
Adding Autofill Lists . 75
Deleting Autofill Lists . 76

Using Names . 76
Calculating Worksheets . 77

Setting Automatic Recalculation . 77
Setting Minimal Recalculation . 78
Solving Circular References . 79

Limiting Data Entry . 80
Denying Access to a Workbook . 80
Denying Access to a Worksheet . 81
Denying Access to Certain Cells . 81
Denying Access to Row and Column Headings . 82
Restricting Cell Data to Certain Values . 82
Denying Entry of Formulas in a Worksheet . 85
Restricting the Use of Certain Keys . 85
Restricting the Use of Certain Mouse Actions . 86

Chapter 6 Editing Worksheets . 87
Copying, Moving, and Pasting Selections . 87

Using Dragging to Move, Copy, and Paste Selections 87
Using Menu Commands to Move, Copy, and Paste Selections 91
Using Methods to Edit, Move, Copy, and Paste Selections 92
Transferring Data via Uniform Data Transfer . 93

Finding and Replacing Data in Formula One . 94
Inserting Cells, Rows, and Columns . 96
Clearing and Deleting Cells, Rows, and Columns . 97
Sorting Data in Worksheets . 98

vi Formula One ActiveX User’s Guide
Chapter 7 Formatting Worksheets . 99
Using Built-in Number Formats . 99

Applying Number Formats to Rows and Columns . 101
Obtaining Formatted Text Programmatically . 101

Creating Custom Number Formats . 102
Formatting Fonts . 106
Aligning Data . 107
Merging Cells . 109

Cutting, Copying, and Pasting Merged Cells . 109
Changing Row Height and Column Width . 110

Setting Default Row Height and Width . 110
Sizing Rows and Columns Using Menu Commands 111
Sizing Rows and Columns Using Click and Drag Actions 112
Sizing Rows and Columns with Properties and Methods 113

Freezing Horizontal and Vertical Panes . 115
Setting Cell Border and Fill Formats . 116

Setting Cell Borders . 116
Setting Cell Fill Colors and Patterns . 118

Formatting Row and Column Headings . 119
Selecting Row and Column Heading Areas . 119
Sizing Row and Column Headings . 120
Setting Row and Column Heading Text . 120

Chapter 8 Working With Graphical Objects . 123
Creating Graphical Objects . 123

Creating Graphical Objects with Methods . 123
Interactively Drawing Graphical Objects . 124

Picture Objects . 125
Setting Mouse Mode . 126

Identifying Graphical Objects . 126
Naming Graphical Objects . 128

Selecting Graphical Objects . 128
Interactively Selecting Graphical Objects . 129
Selecting Graphical Objects Programmatically . 129

Moving, Sizing, and Arranging Graphical Objects . 130
Interactively Moving and Sizing Graphical Objects . 130
Positioning Graphical Objects Programmatically . 131
Determining Graphical Object Position and Size . 132
Arranging Overlapping Graphical Objects . 132

Formatting Graphical Objects . 133
Formatting Colors and Patterns . 133
Formatting Lines (Borders) on Graphical Objects . 134
Showing and Hiding Graphical Objects . 135

Contents vii
Formatting Dropdown List Boxes . 135
Formatting Check Boxes . 136
Formatting Buttons . 137

Selecting Check Box and Dropdown List Box Items 137
Setting Values Interactively . 138
Setting Values Programmatically . 138
Setting Values by Cell Reference . 138

Editing Polygons . 139

Chapter 9 Working With Chart Objects . 141
Creating Charts . 141
Using the Chart Wizard . 142

Navigating in the Chart Wizard . 142
Using the Gallery Page . 143
Using the Style Page . 143
Using the Layout Page . 144
Using the Axes Page . 144

Chart Options . 146
Referencing Data on Another Worksheet . 147

Chapter 10 Printing Worksheets . 149
Printing Worksheets . 149
Specifying Print Areas . 150
Specifying Print Titles . 151
Specifying Page Breaks . 152
Specifying Margins . 154
Setting Page Numbering . 155
Specifying Headers and Footers . 156
Setting Page Orientation . 157
Setting Up Scaling for Printing . 157
Specifying Page Printing Order . 158
Choosing Paper Size . 158
Specifying Miscellaneous Printing Options . 158
Previewing Your Printout . 159

Chapter 11 Working With Databases . 161
Overview of Formula One Connections . 161

Installing the ODBC Drivers . 161
Setting up a Data Source . 162
Connecting to the Data Source . 162

Querying the Data Source . 164
Updating or Inserting Data . 167
Using PREPARE Statements . 168
Binding Worksheet Columns . 169

viii Formula One ActiveX User’s Guide
Executing PREPARE Statements . 170
Disconnecting from the Data Source . 170

Chapter 12 Using Formula One With the Internet . 171
Writing out a Worksheet File in HTML Format . 171

Embedding Formula One Data in an HTML file . 172
Introducing Internet Application Development . 173

Viewing a Web Page Containing Formula One . 173
Adding Formula One to your Web Page . 174
Using Methods and Events for Internet Development 174
Understanding Formula One’s IObjectSafety Support 174
Understanding Formula One’s Safe Events . 175

Chapter 13 Performance Tuning and Specifications 177
Using Performance Tuning . 177
Optimizing Formula One . 178
Understanding Formula One’s Data Structure . 178
Allocating and Freeing Memory . 179
Filling Worksheets with Data . 179
Using Technical Specifications . 180

Chapter 14 Creating Add-In Functions . 183
Formula One ActiveX Add-Ins in Visual Basic . 183

General Design Principles . 183
Thread Safety . 184
Add-In Function Requirements . 184
Visual Basic Example Add-Ins . 186

Formula One C++ Add-In API . 189
How Add-In Functions Are Declared . 189
How Add-In Functions Are Exposed to Formula One 190
How Arguments and Return Values Are Passed . 191
IF1AddInArrayEx interface . 194

Formula Evaluation Errors . 198
C++ Example Add-In . 198

Chapter 15 A-Z Worksheet Function Reference . 203

Index . 297

Preface ix
P R E F A C E

Overview

Formula One is a high-performance workbook control that allows you to create,
manipulate, and print worksheets. It contains the tools needed to store, analyze,
manipulate, and present your data.

New Features in Formula One

Version 6.0
■ Excel 97 support. Formula One supports the Excel 97 and 95 file formats.

Formula One reads and writes worksheets compatible with Excel 97 and 95.

■ Minimal recalculation. Formula One now supports minimal recalculations.
Under some circumstances, this can cause a dramatic improvement in
recalculation speed. For information on minimal recalculation, see “Setting
Minimal Recalculation” on page 78.

■ Worksheet size has quadrupled. Formula One now supports worksheets up to
65,536 rows long. This is four times the number of rows that the previous
version of Formula One provided.

■ Cell capacity has increased. Each cell in a worksheet can contain as much as
16KB of text.

■ Cells can now be merged. Formula One lets you merge two or more adjacent
cells. This opens up a wide range of worksheet formatting possibilities. For
example, developers and users can use merged cells to quickly and easily
create multicolumn headings and titles, to insert blocks of text in worksheets,
or to specify backgrounds and borders. For more information on cell merging,
see “Merging Cells” on page 109.

■ New find and replace method. The Formula One API has a new and improved
way of doing find and replace through the API. It uses a a new API object,
F1FindReplaceInfo. A search can be set up by using the new DefineSearch
method to create a FindReplaceInfo object. The search itself is done using the

x Formula One ActiveX User’s Guide
new FindNext method. The new Replace method replaces the found data with
new data. For information about these new objects and methods, see the
Formula One Online Documentation.

■ New format for fractions. Formula One now allows users to specify the
denominator for fractional data. Now you can express a value of 0.8 as 4/5 or
as 8/10 or even as 80/100.

■ Enhanced printing features. Several printing improvements have been added to
this version. Included is the new F1PageSetup Object that gives developers a
wide range of paper size choices, increased control over worksheet page
numbering, and the ability to set the number of copies Formula One prints by
default. The Page Setup dialog box has also been redesigned. For more
information on the new Page Setup features, see “Printing Worksheets” on
page 149.

■ Increased date range. Dates through the year 9999 are now accepted. The limit
in previous versions of Formula One was 2078.

■ Improved cell editing. When editing a cell, the in-cell edit space expands as
needed to accommodate input.

■ New worksheet function. Formula One now supports the SUMPRODUCT
worksheet function. See page 263.

■ Mouse handling. Support now exists for the IntelliPoint mouse. Hiding the
scroll bars will prevent the user from using the mouse wheel to scroll.

Version 6.1
■ Add-In Functions. Formula One Version 6.1 provides Add-In function support

using Visual Basic and C++. This allows developers to add their own functions
to Formula One. See “Creating Add-In Functions” on page 183 for details.

Installation
The Installer Program can be used to install both trial and working versions of
Formula One.

You are prompted for a valid serial number during installation. If you enter a valid
serial number, Formula One successfully installs as a working developer version.

The product is installed as a trial (demo) version if you do one of the following:

■ press ENTER at the serial number prompt

■ unsuccessfully attempt to enter a serial number three times

After the third attempt, the product installs as a trial version.

Preface xi
The trial version of a product is a NON-REDISTRIBUTABLE component and
will expire after 30 days. You cannot deploy applications with this version. The
trial version displays the About box every 30 minutes reminding you that you are
working with an evaluation version of the product. If you wish to continue
evaluating the product after the 30-day trial, contact Tidestone at (913) 851-2200
or sales@tidestone.com.

Installing the Product
The Setup program creates new directories and copies product files to your hard
disk.

➤ To install a Tidestone ActiveX control on your hard disk:

1. Insert the first disk in your drive.

2. Locate and double-click SETUP.EXE.

3. Follow the Setup program directions.

What Does The Installation Program Do?
The Installer performs the following tasks during the installation process:

■ Allows you to identify the components you want to install, select a directory to
hold the program files, and specify a folder in which to place the program on
your desktop.

■ Copies the files to your hard disk.

■ Updates system files in your Windows system directory or the location of your
choice.

■ Records your serial number. During the installation process, you enter the
product serial number provided on the installation media and product
registration card. The serial number is recorded and displayed in your product’s
About Box. You are required to provide your serial number to receive technical
support and upgrade pricing on future product releases.

■ Registers the ActiveX control with the Windows Registration Database. This
makes the control visible and available to your development environment.

xii Formula One ActiveX User’s Guide
After Installation
Once you install the product, you can determine if you have a full version of the
product or a trial version by displaying the About box. To display the About box,
use the AboutBox method or choose Help > About VCF1 in the standalone
Workbook Designer. Text in the About Box tells you whether you are using an
evaluation copy.

After you successfully install a full version on your system, you can distribute that
ActiveX control to your end users without worrying that the About box might
display on their system every 30 minutes.

If you Experience Installation Problems
If you experience problems installing this product, please read the file
INSTPROB.DOC located on the installation media. This file contains suggestions
for fixing the most common installation problems. If problems persist, contact
Tidestone Technical Support for further assistance.

Technical Support
The Tidestone technical support staff can help you with any problem you
encounter installing or using Formula One. If you need assistance, contact
Tidestone in any of the following ways:

■ On the World Wide Web. For best service, send your technical support requests
directly to the Tidestone Case Tracking System, which you can access from the
Tidestone web site. Point your browser at:

http://www.tidestone.com/support/tsmain.htm

■ By telephone. You can contact our technical support staff at (913) 851-2200 on
weekdays between 9:00 a.m. and 4:00 p.m., central time.

■ By fax. You can contact us by FAX at (913) 851-1390.

■ By mail. Address your correspondence to:

Tidestone Technical Support Department
12980 Metcalf, Suite 300
Overland Park, KS 66213

Preface xiii
■ In Europe, contact:

Tidestone Europe
Lenexa House
11 Eldon Way
Paddock Wood, Kent
England TN12 6BE
Tel: +44 1892 834343
Fax: +44 1892 835843

Documentation Conventions
Throughout this documentation, typographic conventions are used to define
elements and references to Formula One items. .

Convention example Description

AxisSelected, AllowSelections, Select, Names of events, properties, and methods, are
in proper case and bold font.

➤ To install Formula One: A series of numbered instructions are
preceded by an introductory line. The
introductory line begins with an arrowhead.

1.Type a:\setup. Numbered instructions provide step-by-step
directions for performing tasks. The
instructions should be performed in the order
they are presented. In numbered steps, items
you are to enter are shown in Letter Gothic
font.

workbook In general sections, italic text is used for the
first occurrence of a new term.

fontname In reference sections, italic text indicates
variable or argument information you must
supply.

[axis_id] In reference sections, italic text surrounded by
square brackets indicates optional arguments.

{TRUE|FALSE} In reference sections, text surrounded by
braces indicates you must make a choice
among the items inside the braces. Choices
are separated by vertical bars.

F1Book2.ATTACH F1Book1.Title Letter Gothic font is used for all code
examples.

TTF16.OCX File names are presented in upper case text.

VtChart1. RowCount ’number of rows In code examples, an apostrophe precedes a
comment.

Format > Sheet > Properties Choose the Properties option on the Sheet
submenu of the Format menu.

Tidestone

Chapter 1 Getting Started 1
C H A P T E R 1

Getting Started

The Formula One control can be used as an ActiveX control with several
Windows-based development environments, including Microsoft Visual Basic,
Microsoft Visual C++, and PowerBuilder. This chapter describes how to get
started using Formula One with these development environments.

Adding the ActiveX Control to Your Application
The process you use to add an ActiveX control to your application varies slightly
from one development environment to another.

➤ To add an ActiveX control, in most cases:

■ add the control to your project

■ select the control’s tool from the toolbar and draw the control on a form or in a
window

For steps about adding the Formula One control to your application, refer to the
following sections:

■ “Getting Started in Visual C++” on page 1

■ “Getting Started in Visual Basic” on page 8

■ “Getting Started in PowerBuilder” on page 9

Getting Started in Visual C++
Before using Formula One with Visual C++, you should read the Microsoft Visual
C++ documentation and on-line help.

The following section highlights procedures required to use Formula One as an
ActiveX control with the Microsoft Visual C++ 5.0 and 6.0 environments.

2 Formula One ActiveX User’s Guide
Important Visual C++ does not read constants such as F1Auto from the ActiveX
control, so the file TTF16.h, distributed with Formula One, should be included
wherever such constants are used.

Creating a Dialog, CFormView, or CView-Based Application

➤ To create a Dialog, CFormView, or CView-based ActiveX control application
in Visual C++ 5.0 or 6.0:

1. Start Visual C++.

2. Choose File > New to display the New dialog box.

3. Select the Projects tab.

4. Browse to locate the desired directory path.

5. Type a name for your project in the Name text box,

This creates a sub-directory of that name in the current path.

6. From the Type list, select MFC AppWizard(exe) to create a project based on
the MFC library.

7. Click OK.

The MFC AppWizard - Step 1 dialog box appears.

■ To create a Dialog-based application select the Dialog radio button and click
NEXT. Refer to “Creating Dialog Box-Based Applications” on page 2.

■ To create a CFormView-based application select the Single Document or
Multiple Documents radio button. Refer to “Creating CFormView-Based
Applications” on page 3.

■ To create a CView-based application select the Single Document or Multiple
Documents radio button. Refer to “Creating CView-Based Applications” on
page 3.

Creating Dialog Box-Based Applications
To create a dialog box-based application, be sure to complete the steps in
“Creating a Dialog, CFormView, or CView-Based Application” on page 2 before
continuing with the following steps:

➤ To create a dialog-based application in Visual C++ 5.0 or 6.0:

1. Click the FINISH button to accept the default options. Visual C++ builds your
project.

Chapter 1 Getting Started 3
The New Project Information dialog box appears.

2. Click OK.

Creating CFormView-Based Applications
To create a CFormView-based application, be sure to complete the steps in
“Creating a Dialog, CFormView, or CView-Based Application” on page 2 before
continuing with the following steps:

➤ To create a CFormView-based application in Visual C++ 5.0 or 6.0:

1. Click NEXT until you get to the dialog box in step 6.

2. In the Step 6 dialog box, select the class view name from the class list at the top
of the dialog box.

CView appears in the Base Class list.

3. In the Base Class list, change CView to CFormView.

4. Click FINISH for Visual C++ to build your project.

Creating CView-Based Applications
To create a CView-based application, be sure to complete the steps in “Creating a
Dialog, CFormView, or CView-Based Application” on page 2 before continuing
with the following steps:

➤ To create a CView-based application in Visual C++ 5.0 or 6.0:

1. Click FINISH to accept the default options. Visual C++ builds your project.

The New Project Information dialog box appears.

2. Click OK.

Adding the Formula One Component to Your Project
When Visual C++ adds components to your project, it creates CPP and H source
files defining the classes, properties, and methods for the control. It is a good idea
to take a look at these files to understand what they contain. Methods and
properties are not accessed the same in C++ as they are in many other languages
like Visual Basic. When these files are generated, Visual C++ creates both a Get
and Set method for most properties.

➤ To add a Formula One component to your project in Visual C++ 5.0 or 6.0:

1. Choose Project > Add To Project > Components and Controls to display the
Components and Controls Gallery dialog box.

2. Select the Registered ActiveX Controls folder.

4 Formula One ActiveX User’s Guide
3. If the Formula One Control icon is not visible in the list, then the control was
not registered properly and you may need to reinstall or try to register it from
the ActiveX Control Test Container, which is available in the Tools menu of
Visual C++.

4. Select the control from the Component list and click Insert. Click OK.

The Confirm Classes dialog box appears.

5. Click OK to confirm and exit the dialog box.

6. Click Close to exit the Component Gallery.

The Formula One Control appears in the Control palette.

Adding the Component to Your Dialog or CFormView

➤ To add the component to your dialog or CFormView in Visual C++ 5.0 or 6.0:

1. In the Resource Editor, display the dialog box for which you want to place
Formula One.

2. Click the Formula One component in the Editor’s Control palette.

3. Draw the component on the dialog box.

4. Size and place the component using the handles around the control.

5. Click the right mouse button to display the context menu.

You can view and modify the design-time properties using the context menu.

Assigning Member Variables
After you add the workbook control to the dialog box, you must assign a member
variable to the control to gain access to the methods and properties at runtime.

➤ To assign member variables (for CForm or Dialog-based applications) in
Visual C++ 5.0 or 6.0:

1. Choose View > ClassWizard.

2. Select the Member Variables tab.

3. Select the Formula One control in the Control ID window and click the Add
Variable button.

The Add Member Variable dialog box displays.

4. Type the member variable name (e.g., something like m_F1) and click OK to
accept the default variable category and type.

Chapter 1 Getting Started 5
The MFC ClassWizard dialog box displays the variable in the Control ID
window.

5. Click OK in the MFC ClassWizard dialog box to return to your project.

Adding the Formula One Component to Your CView

➤ To add the Formula One component to your CView in Visual C++ 5.0 or 6.0:

1. In the file list, display the header file for the view (<projname>view.h).

2. At the top of the file, include each of the Formula One control header files that
were created when you added Formula One to your project.

3. In the Attributes section, as a public member, add the following to create
member variables for each of the controls in your view:

CTTF1 m_F1;

4. Now through the file list, display the C++ source file for the view
(<projname>view.cpp).

5. Start the ClassWizard, and make sure the view class is selected as the Class
Name.

6. Select the View object in the Object Id list.

7. Select the “Create” message in the Messages list.

The Create handler initially presents the following code:

return CWnd::Create(lpszClassName, lpszWindowName, dwStyle, rect,
pParentWnd, nID, pContext);

Change this to the following:

if (CWnd::Create(lpszClassName, lpszWindowName, dwStyle, rect,
pParentWnd, nID, pContext) == 0)

return FALSE;

if (m_F1.Create("Formula One", dwStyle, rect, this, 1000) == 0
return FALSE;

return TRUE;

8. Start the ClassWizard, and select view class as the Class Name.

9. Select the View object in the Object Id list.

10. Select the WM_SIZE message in the Messages list.

11. Click the Add Function button to create the OnSize handler function for this
message.

6 Formula One ActiveX User’s Guide
12. Add the following code to the handler:

// TODO: Add your message handler code here
if (m_F1) {

m_F1.MoveWindow(0, 0, cx, cy);
}

Working With Top-Level Properties and Methods in Visual C++
TTF1.H defines a number of properties and methods that affect the Formula One
control. Methods are simply called as declared. However, each property has a Get
and a Set method. For example, the Row property documented in the Formula One
online help can be set with the SetRow method, and read with the GetRow
method.

Accessing Formula One Objects in Visual C++
Formula One contains several objects, such as F1CellFormat, F1FileSpec,
F1NumberFormat, etc. You can access each of these objects via wrapper classes
provided by Visual C++. Wrapper classes are generated when you add the F1
control to the project.

➤ To create an object using CreateDispatch, use the following code in Visual
C++ 5.0 or 6.0:

CF1BookView SS;
COleException e;
if (SS.CreateDispatch(CLSID_F1BookView, &e))
{

// commence
}
else
{

e.ReportError();
::AfxThrowOleException(e.m_sc);

}

The guids (see italics above) are defined in TTF16.H and are:

CLSID_F1FileSpec
CLSID_F1ODBCConnect
CLSID_F1ODBCQuery
CLSID_F1BookView

➤ To use an API call to create an object, use the following code in Visual C++
5.0 or 6.0:

CF1CellFormat fmt(m_F1.CreateNewCellFormat());

Chapter 1 Getting Started 7
➤ To call a method that wants an object argument, use the following code in
Visual C++ 5.0 or 6.0:

m_F1.SetCellFormat(fmt.m_lpDispatch);

Handling Events in your Dialog or CFormView in Visual C++

➤ To assign message handlers in Visual C++ 5.0 or 6.0:

1. Start ClassWizard.

2. In the Class Name list, select the Dialog or CFormView class that was created.

3. In the Messages list, select the desired message to handle and click Add
Function to add a handler. For this example, select Click event and click Add
Function to add the handler.

4. Click Edit Code to edit the new function.

5. Add the following code in the function:

AfxMessageBox ("Click Event","You clicked on the workbook");

6. Run the program and when the document is clicked, the message “You clicked
on the workbook” is displayed.

Handling Events in your CView in Visual C++
In the view header, declare the Formula One event handlers to be used, in the
section with all the other AFX messages. In the view source file, implement the
event handlers, and define the EVENTSINK_MAP for the workbook. An easy
way to get boilerplate for these declarations and definitions is to create a
CFormView project with the same name as the CView project and use
ClassWizard to generate the event procedures. Then copy them into the CView
project.

Handling Printing and Previewing in Visual C++
From ClassWizard, add an OnPrint override to the view. Use the Formula One
FilePrintEx method to send the workbook to the printer. If previewing, you must
use the PrintPreviewDCEx method.

Serializing the Control in Visual C++
Using the CopyRangeEx and WriteRangeEx methods, you can read a range of
data from a file and write a range of data to a file. Alternatively, you can load and
save the Formula One OLE control via its IPersistStorage interface.

8 Formula One ActiveX User’s Guide
Setting Properties in Visual C++
You can easily set specific properties for the Formula One control in Visual C++
5.0 and 6.0.

➤ To set the properties of a control on a dialog or a CFormView in Visual C++
5.0 or 6.0:

1. Right-click the control in your project for which you want to set properties and
choose Properties from the context menu.

The Control Properties dialog box appears.

2. Select the appropriate tab for the property settings you want to modify.

Properties are grouped together in categories, such as paragraphs, fonts, and
pages.

3. Modify the property settings as needed.

For more information on each property, see “Property and Method Reference”
in the Formula One online help.

4. Once you set the properties for the active control, close the Control Properties
dialog box to return to your project.

5. Repeat steps 1 through 4 for each control.

Setting Properties for a Control on a CView
Since a control on a CView is created dynamically at runtime, you must call
Formula One methods to make any changes to its initial properties. Make these
calls in the Create handler for the CView.

Getting Started in Visual Basic
The following sections highlight procedures required to use Formula One as an
ActiveX control with Visual Basic, versions 5.0 and 6.0.

Adding the Component to your Visual Basic 5.0 or 6.0 Project

➤ To insert the component into your project:

1. Choose Project > Components or press CTRL T from the keyboard.

You may also right-click the component palette and choose Components from
the context menu.

The Components dialog box appears.

Chapter 1 Getting Started 9
2. Select the Tidestone Formula One control from the list of available controls.

3. If the Tidestone Formula One component is not visible in the component list,
click BROWSE to add the component.

4. Click OK.

The Visual Basic form is returned, and the Formula One component appears in
the Component palette.

5. Double-click the Tidestone Formula One icon in the component palette to drop
it on your form.

You can easily set specific properties for the Formula One component, either
programmatically or through the Formula One property pages.

Setting Properties in Visual Basic 5.0 or 6.0

➤ To set properties for a component programmatically:

1. Select the component in your project for which you wish to set properties.

2. Press F4 to display the properties window.

3. Modify the property settings as needed.

➤ To set properties for a component via the component properties pages:

1. Select the component.

2. Click the right mouse button and choose Properties from the context menu.

The component property pages are displayed.

3. Within these property pages, you may set general features such as application
and table name; determine what editing features are available to end users; and
set the appearance features of the workbook.

For more information on each property, refer to your Formula One online help.

Getting Started in PowerBuilder
This section highlights the basic procedures required to begin using Formula One
as an ActiveX control with the PowerBuilder environment. For detailed
information, consult your PowerBuilder documentation.

You can also consult the Tidestone web site, which contains FAQs and examples
on how Formula One works with PowerBuilder. Point your browser at
www.tidestone.com/environ/default.htm and click PowerBuilder.

The following sections include tutorials that describe the following methods:

10 Formula One ActiveX User’s Guide
■ “OLE 2 Presentation Style” on page 10. This method inserts the Formula One
control into the DataWindow and provides data via the DataWindow object.

■ “Uniform Data Transfer Method” on page 14. This method simply places the
Formula One control in the Application Window. Data is then copied to the
clipboard where Formula One can access the data via the Uniform Data
Transfer method.

■ “Standalone Worksheet Method” on page 18. This method of using Formula
One focuses on using it as a standalone spreadsheet without any database
connectivity.

OLE 2 Presentation Style
This method inserts the Formula One control into the DataWindow and provides
data via the DataWindow object.

Database Preparation
Prior to creating an application in PowerBuilder that accesses a database, you must
ensure that you have correctly configured your environment. The following
sections outline some preliminary measures to take before working with databases
in PowerBuilder.

Configuring the ODBC

➤ To configure the ODBC:

1. Click Configure ODBC.

2. Select the appropriate database driver from the list.

3. Click CREATE.

The ODBC Database Driver Setup dialog box appears.

4. Depending on your selected database driver, the exact setup instructions might
vary. Please refer to the PowerBuilder interface for instructions on how to
locate your database file.

In general, the ODBC Database Driver Setup dialog box prompts you for the
following information.

Data Source Name: A string that identifies this data source configuration in
ODBC.INI.

Description: An optional long description of a data source name.

Database: An identification of the database file.

Chapter 1 Getting Started 11
5. If you must access a SELECT button or a BROWSE button to locate your
database file, select the database file and click OK to return to the ODBC
window.

6. Click OK to confirm the Setup dialog box information.

7. Click CLOSE.

Setting the Database Profile

➤ To set the database profile:

1. Click DB Profile.

The DB Profile Painter window appears.

2. Select the database file you indicated in Step 4 of “Configuring the ODBC” on
page 10.

3. If the database does not appear, click NEW.

4. Enter a long description of the data source name.

5. Choose ODBC in the DBMS field.

6. Select the database file from the SQL Data Sources window that you indicated
in Step 4 of “Configuring the ODBC” on page 10.

7. Click OK to exit the New Database window.

8. Click OK to exit the DB Profile window.

Creating an Application via a PowerBuilder Generated
Application Template

➤ To create an application via a PowerBuilder generated application template:

1. Click APPLICATION to open a new application.

2. Click the NEW button.

The Select New Application Library dialog box appears.

3. Type a filename in the text box.

4. Click SAVE.

The Save Application dialog box appears.

5. Type an Application name.

12 Formula One ActiveX User’s Guide
6. Click OK.

A message box appears prompting: Would you like PowerBuilder to generate
an Application Template?

7. Click YES.

8. Click WINDOW to open a new window.

The Select Window dialog box appears.

9. Select w_genapp_sheet from the list.

10. Click OK.

Adding the ActiveX Control to the PowerBuilder
DataWindow

➤ To add the ActiveX control to the PowerBuilder DataWindow:

1. Click DATAWINDOW.

The Select DataWindow dialog box appears.

2. Click NEW.

The New DataWindow dialog box appears.

3. Select QuickSelect as the DataSource.

4. Select OLE 2.0 as the presentation style.

5. Click OK.

The QuickSelect dialog box appears.

6. Select the appropriate table for your database from the list.

7. Select one or more columns from the table, or select the ADD ALL button.

8. Click OK.

The Insert Object dialog box appears.

9. Select the Insert Control tab.

10. Select the Tidestone Formula One control from the list of Control Types.

If the control is not registered, you must register the control by clicking
REGISTER NEW.

Chapter 1 Getting Started 13
11. Click OK.

The Formula One Workbook Properties dialog box appears.

12. Click OK to dismiss the Tidestone Formula One Control Properties dialog box.

The Formula One control appears in your DataWindow, and the Ole Object
dialog box appears.

13. Select the Data tab.

14. Drag and drop any key Source data to Target data in the appropriate order for
assignment. By dragging this information to the Target data window, you are
linking the database columns to the Formula One worksheet.

15. Click OK.

16. Right-click the DataWindow and choose Properties.

17. Select the General tab and enter the name of the DataWindow object in the
Name text box.

18. Click PREVIEW to preview the DataWindow object and retrieve data from the
database to display in Formula One.

19. Close the DataWindow and indicate Yes to save the changes.

20. Type in a name for your DataWindow object.

21. Click OK.

22. Select File > Close to close the DataWindow.

23. The DataWindow prompts you if you want to save changes. Click Yes.

Connecting the DataWindow Object

➤ To connect the DataWindow object:

1. Select Controls > DataWindow.

2. Drag and drop a DataWindow on the form. Resize as necessary.

3. Right-click on the DataWindow and choose Properties from the context menu.

The DataWindow dialog box appears.

4. Assign a name to your DataWindow in the provided text box or use the default
name.

5. Browse to select the name of the DataWindow object created in the section
titled “Adding the ActiveX Control to the PowerBuilder DataWindow” on
page 12.

14 Formula One ActiveX User’s Guide
The DataWindow control is now bound to the DataWindow object and acts as
an interface to the database.

6. Click OK to accept the values and exit back to the DataWindow dialog box.

7. Click OK to dismiss the DataWindow dialog box.

Creating a Transaction Object for the Application Open
Event

➤ To create a transaction object for the Application Open event:

1. Right-click the form.

2. Choose Script from the context menu.

3. From the Select Event drop-down list, select the Open Event for the form.

4. Append the following script to the Open Event script:

transaction DBTrans
DBTrans = Create transaction
DBTrans. DBMS = ‘ODBC’
connect;
dw_1.settransobject (SQLCA)
dw_1.retrieve()

Note dw_1 represents the default DataWindow control name; supply the name of
your DataWindow control as created in the section titled “Creating the
DataWindow Object” on page 16.

5. Click the Close box on the Script window.

6. Save the script when prompted.

7. Run your application.

Uniform Data Transfer Method
This method inserts the Formula One control into the DataWindow and provides
data via the DataWindow object.

Creating a New Application Window

➤ To create a new application window:

1. Click APPLICATION to open a new application.

2. Click the NEW button.

Chapter 1 Getting Started 15
The Select Application Library dialog box appears.

3. Type a filename in the text box.

4. Click SAVE.

The Save Application dialog box appears.

5. Type an Application name.

6. Click OK.

A message box appears prompting: Would you like PowerBuilder to generate
an Application Template?

7. Click NO.

Modifying the Application Open Event

➤ To modify the application open event:

1. Click SCRIPT from the PowerBar.

2. From the default Select Event drop-down list, select the Open Event.

3. Modify the Open Event script to populate the SQL object and create a startup
application window.

The Open Event script should read as follows:

/* Populate sqlca from current PB.INI settings */
sqlca.DBMS = ProfileString ("pb.ini","database","dbms","")
sqlca.database = ProfileString ("pb.ini","database","database","")
sqlca.userid = ProfileString ("pb.ini","database", "userid","")
sqlca.dbpass = ProfileString ("pb.ini","database","dbpass","")
sqlca.logid = ProfileString ("pb.ini","database","logid","")
sqlca.logpass = ProfileString ("pb.ini","database",

"LogPassWord","")
sqlca.servername = ProfileString

("pb.ini","database","servername","")
sqlca.dbparm = ProfileString ("pb.ini","database","dbparm","")
/* Uncomment the following for actual DB connection */
connect;
if sqlca.sqlcode <> 0 then
MessageBox ("Cannot Connect to Database", sqlca.sqlerrtext)
return
end if
Open (w_fone_demo) // This should be the application window name

that you wish to place the control in and wish to be the
startup application window. (eg. W_test_demo) If it does not
exist, you must create one.

16 Formula One ActiveX User’s Guide
Placing the Control in the Application Window

➤ To place the control in the application window:

1. Click the window to display the window painter.

2. To insert an OLE control, choose Controls > OLE.

The Insert Object window appears.

3. Select the Insert Control tab.

4. From the Control Type list, choose the Tidestone Formula One Workbook
control.

5. Click OK.

6. Click the form to draw the Formula One control in the window.

Creating the DataWindow Object

➤ To create the DataWindow object:

1. Click DATAWINDOW.

2. Click NEW.

3. Select OLE 2.0 and click OK.

4. Select the appropriate table for your database from the list.

5. Select one or more columns from the table, or select ADD ALL.

6. Click OK.

The Insert Object dialog box appears.

7. Select the Insert Control tab.

8. Select the Tidestone Formula One control from the list of Control Types.

If the control is not registered, you must register the control by clicking
REGISTER NEW.

9. Click OK.

10. The Formula One control appears in your DataWindow, and the Ole Object
dialog box appears.

11. Click the Data tab, if necessary.

Chapter 1 Getting Started 17
12. Drag and drop any key Source data to Target data in the appropriate order for
assignment. By dragging this information to the Target data window, you are
linking the database columns to Formula One.

13. Click OK.

14. Click PREVIEW to preview the DataWindow object and retrieve data from the
database to display in Formula One.

15. Close the DataWindow and indicate Yes to save the changes.

16. Type a name for your DataWindow object.

17. Click OK.

18. Select File > Close to close the DataWindow.

19. The DataWindow prompts you if you want to save changes. Click Yes.

Connecting the Control

➤ To connect the control:

1. Select Controls > DataWindow.

2. Drag and drop a DataWindow on the form.

3. Right-click the DataWindow control and choose Properties from the context
menu. The DataWindow dialog box appears.

4. Assign a name to your DataWindow in the provided text box or use the default
name.

5. Click BROWSE to browse and select the name of the DataWindow object that
you just created in the previous section titled “Creating the DataWindow
Object” on page 16.

6. Click OK.

The DataWindow control is now bound to the DataWindow object and acts as
an interface to the database.

The Constructor Event
When the Constructor Event fires, data is copied from the DataWindow object to
the clipboard where Formula One can access it via the Uniform Data Transfer
method.

1. Right-click the Formula One control and choose Script.

2. From the default Event drop-down list, select the Constructor Event.

18 Formula One ActiveX User’s Guide
3. Type the following code:

int li_rc
string ls_data
dw_1.settransobject(sqlca)
li_rc = dw_1.retrieve()
if li_rc > 0 then

ls_data = dw_1.describe("datawindow.data")
ole_1.SetData(ClipFormatText!, ls_data)
ole_1.object.refresh()

end if

4. Close the event window and confirm to save changes.

Standalone Worksheet Method
This method of using Formula One focuses on using it as a standalone spreadsheet
without any database connectivity.

Using Formula One as a Worksheet in PowerBuilder
You may want to use Formula One as a worksheet in PowerBuilder without benefit
of any database connectivity to supply data. You can either enter data in the
Formula One worksheet yourself, or provide data to the worksheet through any
number of copy methods.

1. Click APPLICATION to open a new application.

2. Click NEW. The Select New Application Library dialog box appears.

3. Type a filename in the text box.

4. Click OK.

The Save Application dialog box appears.

5. Type an Application name.

6. Click OK.

A message box appears prompting: Would you like PowerBuilder to generate
an Application Template?

7. Click YES.

8. Click WINDOW to open a new window.

The Select Window dialog box appears.

9. Select w_genapp_sheet from the list.

10. Click OK.

Chapter 1 Getting Started 19
Placing the Formula One Control in the Application
Window

➤ To place the Formula One control in the application window:

1. To insert an OLE control, choose Controls > OLE.

The Insert Object window appears.

2. Select the Insert Control tab.

3. From the Control Type list, choose the Tidestone Formula One Workbook
control.

4. Click OK.

5. Click the form to draw the Formula One control in the window.

You can now use Formula One in the PowerBuilder environment.

Working in PowerBuilder

Calling ActiveX Properties and Methods in PowerBuilder
The syntax to access an ActiveX property or method is as follows:

<Ole_Object>.object.<Ole Property or Method>

Property Example:

Ole_1.object.ShowGridlines (False)

Method Example:

Ole_1.object.SetSelection (1,1,5,5)

Converting General Syntax into PowerBuilder Syntax
The Formula One online help provides detailed descriptions of the specific roles of
each property and method. It explains all the parameters and their settings. The
general syntax for the property or method you are using can be easily converted to
PowerBuilder syntax if you follow the guidelines in this section:

➤ To convert syntax for PowerBuilder:

1. Go to the script window where you want to call the property or method.

2. Select Design > Browse Object.

3. In the Browser, select the OLE tab.

4. In the Browser window, double-click Ole Custom Controls.

20 Formula One ActiveX User’s Guide
5. Find the ActiveX (OCX) control that you want to access.

Under the ActiveX control is a list of Properties and Functions with the proper
PowerBuilder syntax.

Trapping Errors in PowerBuilder
The PowerBuilder ActiveX container has an event called ExternalException. This
event fires anytime an OCX throws an exception. In the ExternalException event,
there are arguments that you can check to find out the details of the exception. For
example:

Script - externalexception for ole_1
MessageBox ("Exception", description)

This displays the description text of the exception that is thrown.

Handling Method Parameters Passed By Reference
To handle an ActiveX method with parameters that are passed by reference, you
must place the keyword REF in front of the parameter.

The following example shows this with the Formula One SaveFileDlg method.

string pBuf
into FileType
ole_1.object.SaveFileDlg ("Save File", REF pBuf, REF pFileType)

Upgrading Formula One
Developers who are upgrading from an earlier version of Formula One to Formula
One 6.0 or 6.1 should be aware of the following issues.

■ Converting 4.x or 5.x workbooks to 6.x workbooks is as easy as opening and
saving a file. To open the file, use the File > Read menu command in the
Workbook Designer, the File > Open command in the standalone Workbook
Designer, or the Read or ReadEx methods in the API. Then save the file in 6.0
format in order to complete the conversion.

■ To convert 2.0 workbooks, open the standalone Workbook Designer and use the
File > Import > Formula One 2.x command. This menu command is only
available on the standalone Workbook Designer. After importing the file, save
it in the Workbook Designer using the File > Save command. This will save it
in 5.0 format. Then you may open that 5.0 file and save it in the 6.x format.

Note You can no longer read in a Formula One 2.x file programmatically. You
must use the standalone Workbook Designer to import it, as described above.

Chapter 1 Getting Started 21
■ If you want to keep both versions of the software installed as components in
your container, you will need to ensure that code that refers to objects specifies
which version of the software you want to use. This is because the names of the
objects are the same in both versions, so the container has no way of knowing
which version you want. The following example, which uses the F1RangeRef
object, specifies that the 6.0 version of the object should be used:

Dim Range As TTF160Ctl.F1RangeRef

Another way to fix this problem is to use either the 5.0 or the 6.x version of the
software, but not both.

For further information about upgrading from previous versions of Formula One,
check the Tidestone website at www.tidestone.com.

Tidestone

Chapter 2 Introducing Formula One 23
C H A P T E R 2

Introducing Formula One

Formula One provides a high-performance workbook control that allows you to
create, manipulate, and print workbooks. Workbooks are objects that are drawn on
a form or in a window of an application. You can also create invisible workbooks,
which allow you to perform calculations or other functions without showing a
workbook on a form or in a window. These objects are maintained by Formula
One.

Formula One also provides the Workbook Designer. The Workbook Designer
provides a graphical interface that allows you to design and format a workbook for
your application by pointing and clicking and using menu commands. The
Workbook Designer is also available as a stand-alone application which allows
you to create Formula One spreadsheets.

Working with API Objects
Formula One provides a variety of API objects that are useful for the development
of your applications. The main objects, F1Book and F1BookView, contain the
lion’s share of the Formula One functionality. Of the remaining objects, only
F1FindReplaceInfo actually performs actions -- the remaining objects merely hold
data for the two book objects to access.

The following objects are discussed in this manual and in the Formula One online
help:

■ F1Book. A Formula One workbook object. An F1Book object is created when
you place a Formula One workbook control on a form.

■ F1BookView. A Formula One workbook view. An F1BookView object is a
windowless, invisible workbook. It can contain data of its own, or it can be
attached to a workbook, but have its own selection and view settings.

■ F1FindReplaceInfo. A Formula One find/replace object. An F1FindReplaceInfo
object contains properties and methods for find and replace operations.

24 Formula One ActiveX User’s Guide
Note The following objects hold data. They must be used in conjunction with
F1Book or F1BookView methods to perform actions.

■ F1CellFormat. A Formula One cell format object. An F1CellFormat object
contains properties that describe a cell format.

■ F1EventArg. A Formula One event argument object. An F1EventArg object
represents a reference to a variant value.

■ F1FileSpec. A Formula One file spec object. An F1FileSpec object contains
properties that describe a workbook file.

■ F1NumberFormat. A Formula One number format object. An F1NumberFormat
object contains properties that describe a number format.

■ F1ObjPos. A Formula One object position object. An F1ObjPos object contains
properties that identify the position of a specified object.

■ F1ODBCConnect. A Formula One ODBC connect object. An F1ODBCConnect
object describes an ODBC connection.

■ F1ODBCQuery. A Formula One ODBC query object. An F1ODBCQuery object
describes a query.

■ F1PageSetup. A Formula One page setup object. An F1PageSetup object
contains properties that describe the page setup for printing worksheets.

■ F1RangeRef. A Formula One range reference object. An F1RangeRef object
contains properties that identify a range of cells.

■ F1Rect. A Formula One rectangle object. An F1Rect object contains properties
that identify the rectangular area of a range or object on a worksheet.

■ F1ReplaceResults. A Formula One replace results object. An F1ReplaceResults
object contains properties that identify how many items have been found and
how many have been replaced.

Understanding Workbooks and Worksheets
When you open or create a file in Formula One, you are creating or opening a
workbook. Workbooks store cell data, cell formulas, workbook formatting
information, and workbook-specific information such as printing attributes and
calculation attributes. You can open multiple workbooks simultaneously. Formulas
in one workbook can refer to cells in other workbooks. The Formula One engine
manages all open workbooks.

Chapter 2 Introducing Formula One 25
A workbook is a collection of individual worksheets.Worksheets allow you to
show and analyze data. Data can be manipulated on several worksheets
simultaneously, and you can base calculations on data from multiple worksheets.
Worksheets are useful for organizing information into separate groups. For example,
you might have the year-end sales figures for each sales region on a different
worksheet within the same workbook. Having all the information in one worksheet
can be cumbersome; splitting it into separate files makes working with the data
inconvenient.

Introducing the Workbook Designer
The Workbook Designer, shown in the following illustration, appears and behaves
much like a commercial spreadsheet application. It is useful in different ways; for
example, you can use it when you are designing an application or it can be
launched from your application during runtime. You can also create Formula One
worksheets using the stand-alone version. Refer to “Overview of the Workbook
Designer” in this manual for information about the specific functions of the
Workbook Designer.

Using Workbooks, Views, and Invisible Workbooks
In Formula One, you can create workbook controls (F1Book) and invisible
workbook objects (F1BookView). This section discusses the purpose and
functionality of these controls.

This toolbar allows you to create drawing objects.

This toolbar provides
access to common
functions.

Data and formulas
are entered in the
worksheet.

26 Formula One ActiveX User’s Guide
Working With the F1Book Control
When you create a workbook (F1Book), a default view is automatically created. A
view provides a simplified method for showing data with different options
displayed. Views contain information about:

■ grid line display

■ column and row heading display

■ fixed row and column specifications

■ maximum workbook viewing size

In addition, views can contain information about user permissions such as whether
the user is allowed to select cells, enter or edit data, or resize rows and columns.

The following illustrates the concept of one view showing data from one
workbook.

A view is attached to a workbook by default; however, you can change the view to
which the workbook is attached. Multiple views can be used to display specified
data from one workbook, but each view can only display data from one workbook
at a time. When multiple views are displaying data from the same workbook, any
change made in one view is reflected in the other views. The following illustrates
this concept.

Workbook

View

The view inherits
the formatting and
properties from the
workbook.

When you update data and formulas in
the workbook, they are reflected in the
view, and vice versa.

Chapter 2 Introducing Formula One 27
The view should not be confused with the F1BookView API object. A view can
only accommodate data from one workbook at a time. If you want to show one
workbook that includes data from multiple workbooks, use the F1BookView API
object, which is discussed in the following section.

Working With the F1BookView Control
Formula One provides an F1BookView API object that allows you to create an
invisible workbook control. An invisible workbook is windowless, and can only be
created programmatically as an F1BookView object.

The F1BookView object is useful for any situation in which you do not want to
interrupt a visible workbook, form, or window. For example, it is useful when you
want to perform calculations or formatting “behind the scenes” within the invisible
workbook.

In addition, if you want to build an application that shows one workbook, but
includes data from multiple workbooks, you can use invisible workbooks to hold
the data that you do not want the user to see. This technique works without
requiring you to hide the workbooks; therefore, the users are less likely to notice
changes to the visible workbook.

When you want an invisible workbook to become visible, use the Attach or
AttachToSS method to attach the F1BookView object to an F1Book object. When
an invisible workbook is attached, the previous attachment is severed. For
additional information about attaching, refer to “Using Attach Methods” on
page 30.

Workbook

The arrows indicate the portion of
the workbook that is displayed in
each of the views.

View

View

View

28 Formula One ActiveX User’s Guide
The following example shows how you can use the F1BookView API object. In
this example, data shown in the F1Book control changes according to the invisible
workbook that is attached to this visible workbook. The calculations and data that
are displayed do not require cut or clear commands so the user is less likely to
notice changes to the visible workbook.

The following code is used to create the invisible workbooks and perform the
calculations.

These variables are declared:

Dim bv1 As F1BookView
Dim bv2 As F1BookView

This code creates the invisible workbooks, and reads in a workbook:

Private Sub Form_Load()
Dim FileName As String
Set bv1 = F1Book1.CreateBookView
Set bv2 = F1Book1.CreateBookView
bv1.ReadEx “wb1.vts”
bv2.ReadEx “wb1.vts”

End Sub

This code is included for the “Quarter Totals” button:

Private Sub Command1_Click()
F1Book1.AttachToSS bv1.SS
bv1.TextRC(22, 1) = "Total"

Visible workbook.

Invisible workbook (bv1).

Invisible workbook (bv2).

When this button is
clicked, this invisible
workbook is shown.

When this button is clicked, this invisible workbook is shown.

Chapter 2 Introducing Formula One 29
bv1.FormulaRC(22, 2) = "sum(b2:b21)"
bv1.SetSelection 22, 2, 22, 5
bv1.EditCopyRight

End Sub

This code is included for the “Region Totals” button:

Private Sub Command2_Click()
F1Book1.AttachToSS bv2.SS
bv2.TextRC(1, 6) = "Total"
bv2.FormulaRC(2, 6) = "sum(b2:e2)"
bv2.SetSelection 2, 6, 21, 6
bv2.EditCopyDown

End Sub

Using Properties and Methods with F1BookView
For each F1BookView API object, you can set or get properties to determine:

■ actions and tasks the user can perform

■ the appearance of the workbook and its worksheets

■ the content and location of cells

■ the selection status of cells

■ the format of data

In general, most methods and properties that perform actions such as visually
formatting a workbook or calling dialog boxes are not supported by the
F1BookView object because it is an invisible workbook. Specifically, you cannot
use the following properties and methods with the F1BookView object:

AllowDesigner BorderStyle CalculationDlg

CancelEdit ColorPaletteDlg ColWidthDlg

DefinedNameDlg DefRowHeightDlg DeleteDlg

DoCancelEdit DoClick DoDblClick

DoEndEdit DoEndRecalc DoObjClick

DoObjDblClick DoObjGotFocus DoObjLostFocus

DoObjValueChanged DoRClick DoRDblClick

DoSafeEvents DoSelChange DoStartEdit

DoStartRecalc DoTopLeftChanged Enabled

FileName FilePageSetupDlg FilePrintPreview

FilePrintSetupDlg Find FindDlg

FindEx FormatAlignmentDlg FormatBorderDlg

FormatCellsDlg FormatDefaultFontDlg FormatFontDlg

30 Formula One ActiveX User’s Guide
Using Attach Methods
You can change the view or invisible workbook that is attached to your workbook
at any time using the Attach or AttachToSS method. These methods attach a view
or invisible workbook to a different workbook and severs the current attachment.

When using attach methods, there are several important rules to remember.

■ A view or F1BookView invisible workbook can be connected to only one
workbook control at a time.

■ An F1Book1 workbook control can have multiple views or F1BookView
invisible workbooks to which it is attached.

■ An F1Book1 workbook is always attached to a view. It ceases to exist if it is
not attached to a view.

➤ To change the view or invisible workbook in which a workbook is attached:

1. Create a workbook control.

2. Create another workbook control to act as a view. Alternatively, create an
invisible workbook.

3. Attach the workbook to the view or invisible workbook using the Attach or
AttachToSS method.

The following code selects a workbook and attaches it to a view using the Attach
method (F1Book2 is the view and F1Book1 is the workbook):

F1Book2.ATTACH F1Book1.Title

Controlling the Display of Workbook Areas
There are a number of properties you can set to determine which area of the
workbook is displayed. You must identify the worksheet and range of cells to
appear in the current workbook or view.

FormatNumberDlg FormatObjectDlg FormatPatternDlg

FormatSheetDlg GotoDlg hWnd

InsertDlg LaunchDesigner LaunchWorkbookDesigner

LineStyleDlg Mode ObjNameDlg

ObjOptionsDlg OptionsDlg PasteSpecialDlg

PolyEditMode ProtectionDlg Replace

ReplaceDlg ReplaceEx RowHeightDlg

SaveFileDlg SaveFileDlgEx SortDlg

ValidationRuleDlg

Chapter 2 Introducing Formula One 31
If the workbook contains multiple worksheets, you can specify which worksheet
you want to display. This is accomplished by setting the Sheet property. Set Sheet
to the index number of the worksheet you want to display. Sheets are indexed from
left to right beginning with 1. Do not confuse the index with the worksheet sheet
name that appears on the sheet tab.

To prevent users from going to another worksheet in the workbook, you can set the
ShowTabs property to F1TabsOff. This hides the sheet tabs, preventing the user
from changing sheets. Alternatively, you could write code within the SelChange
event to prevent the user from changing worksheets.

You can limit the area of each worksheet that can be seen by setting the MinRow,
MinCol, MaxRow, and MaxCol properties for each worksheet. This is
particularly useful when you want to use multiple views to display different parts
of the worksheet.

The following illustration shows the property settings used to limit the number of
rows that can be displayed in a view. The data displayed in all three views is
contained in one worksheet. Notice that none of the views have vertical scroll bars.
This is to prevent the end users from scrolling beyond the rows they already see.

MinCol = 1
MinRow = 2
MaxCol = 5
MaxRow = 7

MinCol = 1
MinRow = 9
MaxCol = 5
MaxRow = 14

MinCol = 1
MinRow = 16
MaxCol = 5
MaxRow = 21

32 Formula One ActiveX User’s Guide
Saving View or Invisible Workbook Information
When a workbook is saved, the settings from the view or invisible workbook that
requested the save operation are saved with the workbook. When a view or
invisible workbook is attached to a workbook, the view settings are retrieved from
the workbook.

Reading and Writing Files
Formula One can read and write a number of file formats. The following table lists
the formats and the associated file name extensions.

Formula One 6.x does not support the Formula One 1.x or 2.x or Excel 4.x file
formats.

Since Formula One has some features not supported by Excel, files saved in the
VTS file format cannot be read by Excel. The XLS format is based on records
where each record represents a unique feature or property of the workbook. If the
file you save contains features not supported by Excel, they are removed when the
workbook is saved as an XLS file. Likewise, Excel contains features not supported
by Formula One. Unsupported features are ignored when Formula One loads an
Excel worksheet or workbook.

Important If you load an Excel file that contains features not supported by
Formula One, such as charts, drawing objects, or array formulas, those features are
ignored. If the imported file is then written from Formula One as an Excel file and
subsequently read by Excel, those features are omitted and irretrievable.

Formula One cannot read password-protected Excel files. If you intend to read
files from Excel, they should not be password-protected.

Format File Extension Description

Formula One .VTS Formula One 6.x format

Formula One 3, 4, or 5 .VTS Formula One 3.x, 4.x, or 5.x format

Excel 97 .XLS Excel 97 format

Excel 5.0 or 95 .XLS Excel 5.0 or 95 format.

Tabbed-Text .TXT Tab-delimited text file including number
formatting information.

Tabbed-Text (values only) .TXT Tab-delimited text without formatting
information.

HTML .HTM HTML format including text formatting
information. (Write-only format.)

HTML (data only) .HTM HTML format without graphics
information. (Write-only format.)

Chapter 2 Introducing Formula One 33
The following methods and properties are available for reading and writing files in
Formula One applications:

Using BLOB access
A Formula One workbook can also read data from or write data to a memory
variable defined as a Binary Large Object (BLOB.) This allows you to store
worksheets or workbooks in a database table and later retrieve them from the
database table.

➤ To retrieve a worksheet or workbook from a database table:

1. Write code outside Formula One to read a worksheet or workbook from a
database table into a BLOB variable.

2. Call Formula One’s ReadFromBlob method to display that worksheet or
workbook in the workbook control.

➤ To store a worksheet or workbook in a database table:

1. Call Formula One’s WriteToBlob or WriteToBlobEx method to copy the
worksheet or workbook from the Formula One control to a BLOB variable.

2. Write code outside Formula One to write the worksheet or workbook from the
blob variable to a database table.

Note When you use the WriteToBlob and WriteToBlobEx methods, Formula One
automatically uses the latest Formula One file format. Older versions of Formula
One can’t read files saved in the newer versions’ formats. This means that
developers who use more than one version of Formula One should be careful
which version they use to write to BLOB memory variables.

Property/Method Description

Read, ReadEx Reads a worksheet from disk.

ReadFromBlob Reads a worksheet that has been stored in memory in
a blob variable.

SaveFileDlg, SaveFileDlgEx This dialog box allows you to save the current file in
Formula One, Excel, tabbed text format or HTML format.

Write, WriteEx Saves the worksheet to a file.

WriteToBlob, WriteToBlobEx Writes a worksheet to a blob variable.

34 Formula One ActiveX User’s Guide
Writing out a Range of Cell Data
Formula One provides the following three methods for writing out a range of cell
data.

■ WriteRange or WriteRangeEx. These methods write a range of cell data to a new
file.

■ InsertHTML. This method embeds a range of cell data into an existing HTML
file at a specified anchor point.

➤ To write a range of cell data to a new HTML file:

Use the WriteRange or WriteRangeEx method to identify the cell boundaries
and worksheet that you want to write data from and specify the type of new file
you wish to create.

➤ To embed a range of cell data into an existing HTML file

Use the InsertHTML method to identify the cell boundaries and worksheet that
you want to write data from and specify the anchor point in the file where you
want the cell data embedded.

Chapter 3 Overview of the Workbook Designer 35
C H A P T E R 3

Overview of the Workbook Designer

The Workbook Designer is an interactive program that is available at design time,
runtime, or as a standalone spreadsheet application. The Workbook Designer
provides access to functions for designing and formatting a workbook by pointing
and clicking and choosing commands from menus. The Workbook Designer allows
you to manipulate a workbook control just like it was a part of spreadsheet
application. The following illustration shows the Workbook Designer as it is
displayed at design time or runtime.

Drawing Toolbar

Main
Toolbar

Formula
Bar

You can insert multiple worksheets.

36 Formula One ActiveX User’s Guide
The following illustration shows how the Workbook Designer is displayed as a
standalone spreadsheet application.

Launching the Workbook Designer
The manner in which you are using the Workbook Designer determines how you
launch it. You can launch the Workbook Designer using any of the following
techniques:

➤ To launch the Workbook Designer during design time:

1. Right click on the Formula One control to display the context menu.

2. Select Workbook Designer from the context menu.

➤ To launch the Workbook Designer during runtime:

■ Double-right click on the Formula One control and the Workbook Designer is
displayed.

➤ To launch the Workbook Designer as a standalone spreadsheet application:

■ Double-click on TTF1.EXE in the Windows Explorer, or

■ Select Start > Run and type the path to TTF1.EXE.

➤ To launch the Workbook Designer from your application:

■ Use the LaunchDesigner method as shown in the following example:

F1Book1.LaunchDesigner

Main
Toolbar

Drawing
Toolbar

Formatting
Toolbar

Formula
Bar

Chapter 3 Overview of the Workbook Designer 37
Calling this method displays the Workbook Designer, regardless of the setting of the
AllowDesigner property.

The following sections provide additional information about the Workbook Designer
menus and toolbars.

Docking the Toolbars
The toolbars in the standalone Workbook Designer are dockable. This means that
you can drag them to a new location within the Workbook Designer, or make them
float on top of the Workbook Designer.

➤ To move the dockable toolbars:

1. Select the toolbar you want to move.

2. Drag it to a new location.

If you drag it to an edge of the Workbook Designer, it is docked on that side of
the Workbook Designer. If you drag and release the toolbar on top of the
Workbook Designer, the toolbar is left floating.

Using the Workbook Designer Menus
The following tables highlight the commands available on the Workbook Designer
menu bar and provide a brief description of each command.

File Menu
Command Description

New Creates a new file. In the built-in version of the Workbook
Designer, this action deletes any information currently in the
Workbook Designer. The standalone Workbook Designer
allows more than one workbook open at a time.

Read
Open (standalone)

Opens a workbook file from disk. Formula One can open
files in the following formats: Formula One 3.0 or later
(.VTS files), Excel 5.0 or later (.XLS files), and tabbed text
(.TXT).

Close Closes the Workbook Designer

Write
Save (standalone)
Save As (standalone)

Saves the current worksheet. Formula One can save files in
the following formats: Formula One 3.x, 4.x, 5.x, or 6.x
(.VTS files), Excel 5.0, 95, or 97 (.XLS files), tabbed text or
values-only tabbed text (.TXT), or HTML or data-only
HTML (.HTM).

Import... (standalone) Lets you import documents in the Formula One 2.x and Excel
4 file formats. In order for this to work, the developer or user
must have a copy of Formula One 5.0 with a valid license key
installed on his or her machine.

38 Formula One ActiveX User’s Guide
Edit Menu

Page Setup Displays the Page Setup dialog box. This dialog box allows
you to define header and footer text, page margins, page print
order, page centering, worksheet-related print options, and
scale.

Print Area Defines the currently selected range in the active worksheet
as the Print_Area user-defined name.

Print Titles Defines the currently selected range in the active worksheet
as the Print_Titles user-defined name.

Print Preview Displays how the worksheet prints.

Print Displays the standard Windows Print dialog box. This dialog
box allows you to select print options, and print the active
worksheet.

[recent files] (standalone) Displays a list of the last few workbooks that Formula One
has opened or created and allows the user or developer to
open one or more of them.

Exit (standalone) Exits the standalone Workbook Designer.

Command Description

Cut Cuts the current worksheet selection to the clipboard.

Copy Copies the current worksheet selection to the clipboard.

Paste Pastes the contents of the clipboard to the current worksheet
selection.

Paste Special Pastes the formats, values, or formulas of copied cells into
selected cells. In addition, Paste Special controls how data
copied from a different application is pasted.

Copy Cell Format Copies the current cell formatting so you can apply it to
another cell. Refer to the FormatPaintMode property in the
Formula One on-line help for additional information.

Polygon Points Toggles between normal polygon editing and polygon point
editing. When polygon point editing is enabled, this
command is checked.

Select All Objects Selects all of the graphical objects on the active worksheet.

Sort Displays the Sort dialog box. This dialog box allows you to
set the sorting method and sort keys for data sorting.

Fill Data in the top or leftmost cell is copied down or to the right
to fill the range.

Clear > All Clears formats and values from the selected cells.

Clear > Formats Clears only formats from the selected cells.

Clear > Contents Clears only values from the selected cells.

Command Description

Chapter 3 Overview of the Workbook Designer 39
View Menu

Insert Menu

Delete Deletes the current selection or selected objects. Cells
adjacent to the deleted cells are shifted to fill the space left
by the vacated cells.

Delete Sheet Removes the selected worksheets, and shifts the worksheets
to the right of the deleted worksheets to the left.

Find Searches in selected cells or sheets for the characters that
you specify. It selects the first cell that contains those
characters.

Replace Searches in selected cells or sheets for the characters that
you specify, and replaces them with your specified
replacement characters.

Goto Displays the Goto dialog box. This dialog box allows you to
specify a cell to display in the worksheet window. The
specified cell is made the active cell.

Command Description

Toolbar > Standard Toggles the display of the Main Toolbar.

Toolbar > Drawing and Forms Toggles the display of the Drawing Toolbar.

Formula Bar Toggles the display of the Formula Bar.

Status Bar Toggles the display of the Status Bar.

Command Description

Cells Inserts cells at the location of the current selection. Cells
adjacent to the insertion are shifted to make room for the
new cells.

Rows Inserts a new row above the selected cell or row.

Columns Inserts a new column to the left of the selected cell or
column.

Worksheet Inserts a new worksheet to the left of the selected worksheet.
If more than one worksheets are selected, this command
inserts the same number of worksheets that are selected. This
command fails if non-contiguous sheets are selected.

Chart Inserts a First Impression chart on the active worksheet.

Command Description

40 Formula One ActiveX User’s Guide
Format Menu

Page Break Places a horizontal page break adjacent to the top edge of the
active cell and a vertical page break adjacent to the left edge
of the active cell. If a row or column is selected, a page break
is placed adjacent to the selected row or column.

Name Displays the Define Name dialog box. This dialog box
allows you to add and delete user-defined names.

Drawing Object > Arc Selects the Arc tool which allows you to draw arcs.

Drawing Object > Line Selects the Line tool which allows you to draw lines.

Drawing Object > Oval Selects the Oval tool which allows you to draw ovals.

Drawing Object > Polygon Selects the Polygon tool which allows you to draw polygons.

Drawing Object > Rectangle Selects the Rectangle tool which allows you to draw
rectangles.

Forms Object > Button Selects the Button tool which allows you to draw buttons.

Forms Object > Checkbox Selects the Check Box tool which allows you to draw check
boxes.

Forms Object > Dropdown
Listbox

Selects the Drop Down List Box tool which allows you to
draw drop-down list boxes.

Cancel Insert Object Allows you to unselect a graphical object tool.

Command Description

Cells Displays the Format Cells dialog box which allows you to
set cell formatting such as numeric display, alignment, fonts,
borders, patterns, protection, and validation.

Row > Height Displays the Row Height dialog box. This dialog box allows
you to set the height of the selected rows, specify default row
heights, and specify automatic row height. In addition, you
can specify whether the selected rows are shown or hidden

Row > Hide Hides the selected rows, which does not delete them from the
worksheet.

Row > Unhide Shows the hidden rows in a selection.

Row > Default Height Displays the Row Height dialog box which allows you to
define a default height of rows.

Column > Width Displays the Column Width dialog box. This dialog box
allows you to set the width of the selected columns, specify
default column widths, and specify automatic column width.
In addition, you can specify whether the selected columns
are shown or hidden.

Column > Autofit Selection Automatically adjusts the width of all cells in the column to
accommodate the size of a text string or value.

Column > Hide Hides the selected columns, which does not delete them from
the worksheet.

Command Description

Chapter 3 Overview of the Workbook Designer 41
Tools Menu

A standard Window menu is provided on the standalone version of the Workbook
Designer.

Column > UnHide Shows the hidden columns in a selection.

Column > Default Width Displays the Column Width dialog box which allows you to
define a default width of columns.

Sheet > Properties Displays the Format Sheet dialog box which allows you to
set properties for the active worksheet.

Sheet > Protection Enables protection for protected cells in the worksheet. A
check next to this command means that protection is
enabled. Select the command again to disable protection.

Freeze Panes Freezes the selected columns or rows. Frozen columns and
rows do not scroll and cannot be edited.

Unfreeze Panes Unfreezes frozen panes.

Default Font Displays the Default Font dialog box. This dialog box allows
you to set the default font used to display data in worksheets.
In addition to setting the font and font size used to display
data in a worksheet, the default font affects the widths of
worksheet columns. Column widths can be set in units equal
to 1/256th of the character 0 (zero) in the default font.

Object Displays the Format Object dialog box, and includes the
appropriate tabbed pages for the selected object.

Bring to Front Places the selected objects in front of other objects in the
worksheet.

Send to Back Places the selected objects behind other objects in the
worksheet.

Command Description

Recalc Recalculates all open cells, worksheets, and workbooks.

Options Accesses the Options dialog box. The Options dialog box
includes tabbed pages for setting general, calculation, and
color options.

Command Description

42 Formula One ActiveX User’s Guide
Using the Workbook Designer Toolbars
The buttons on Formula One’s toolbars provide easy access to some of the most
common Formula One menu items. Formula One has three toolbars: Standard,
Formatting, and Drawing and Forms. You can display or hide the toolbars by
toggling options in the View > Toolbars menu.

Standard Toolbar
Use the buttons on the Standard Toolbar to perform basic workbook functions such
as opening, saving, and printing.

Button Name Description

New Creates a new file.

Read Opens an existing file.

Save Saves a file.

Print Prints the active worksheet.

Print Preview
Displays the active worksheet in Print Preview
mode.

Cut Cuts a selection to the clipboard.

Copy Copies a selection to the clipboard.

Paste Pastes from the clipboard.

Copy Format Copies the format of the selected cells.

Toggle Drawing
Toolbar

Toggles the display of the Drawing Toolbar.

Chapter 3 Overview of the Workbook Designer 43
Formatting Toolbar
Use the buttons on the Formatting Toolbar to quickly and easily format the data in
the selected cell(s). This toolbar is available only with the standalone Workbook
Designer.

The Format Toolbar also provides drop-down lists that allow you to select fonts and
font sizes.

Button Name Description

Bold
Controls the bold attribute for the currently selected
range of data.

Italic
Controls the italic attribute for the currently
selected range of data.

Underline
Controls the underline attribute for the currently
selected range of data.

Color

Selects a color for the currently selected range of
data. The color applies to the numbers and letters in
the cell, not to the background or borders of the
cell.

Left Align Left aligns the selected range of data.

Center Centers the selected range of data.

Right Align Right aligns the selected range of data.

Merge and Center
Merges the selected cells and centers the selected
data. This is useful for straddling heading
information across rows or columns.

Common Fixed and
General Formats

Displays a list of common fixed and general
formats. Select a format to apply it to the selected
range of data.

Currency
Displays a list of common currency formats. Select
a format to apply it to the selected range of data.

44 Formula One ActiveX User’s Guide
Refer to “Interactively Drawing Graphical Objects” on page 124 in this manual for
information about the icons on the Drawing Toolbar.

Percent
Displays a list of common percent formats. Select a
format to apply it to the selected range of data.

Fraction
Displays a list of common fraction formats. Select a
format to apply it to the selected range of data.

Date and Time
Displays a list of common date and time formats.
Select a format to apply it to the selected range of
data.

Button Name Description

Chapter 4 Workbook Fundamentals 45
C H A P T E R 4

Workbook Fundamentals

Before you can successfully use a Formula One control, you must understand some
basic concepts about the workbook. You must understand how to select worksheets,
cells, ranges, rows, and columns, enter and delete data, and display specific sections
of a workbook.

This chapter discusses:

■ setting up workbook defaults

■ adding, inserting, deleting, naming, selecting, and displaying worksheets

■ navigating through a sheet with keyboard commands and with mouse actions

■ selecting cells and ranges

■ selecting entire rows and columns

■ setting selection options

Setting up Workbooks
Formula One gives you options for customizing the display and the defaults used in
the Workbook Designer. In most cases, you may use the preset defaults, but you may
change them if you want using the options described below.

Displaying Parts of the Workbook Designer
You may choose to change whether and how the Workbook Designer displays certain
things in a workbook. These options affect all worksheets in the workbook.

More display options are available per individual worksheets. To change how to
display different characteristics of individual worksheets, see “Setting Display
Options for Worksheets” on page 55.

46 Formula One ActiveX User’s Guide
➤ To change workbook display options in the Workbook Designer:

1. Choose Tools > Options and click the General tab, shown below.

2. Choose the options you want, as described above, and click OK.

➤ To change workbook display options programmatically:

■ Use the ShowTabs, ShowEditBar, ShowEditBarCellRef, and
ShowTypeMarkers properties.

Note You can hide the worksheet tabs in order to limit users to a single worksheet
in a workbook that contains multiple sheets. Use the Sheet property to make the
sheet you want users to access the active sheet.

Setting the Default Font
You can set a default font, font size, and style that will apply to all worksheets in the
workbook. Later you can change these settings for individual cells in the Font tab of
the Format Cells dialog box. Changes you make in the Format Cells dialog box will
remain, even if you change the default settings.

The default font effects the widths of worksheet columns. Column widths are set in
units equal to 1/256th of the character 0 (zero) in the default font, or twips,
depending on the setting of the ColWidthUnits property.

Because the basic unit for measuring columns can change when you change the
default font, you may need to adjust the widths of columns (including the row header
column) after setting the default font.

You may display worksheet
tabs at the top or bottom of
the worksheet or turn them
off.

Click here to display or hide
the formula bar, which
appears at the top of the
worksheet and shows the
contents of the selected
cell.

Click here to display or
hide the cell reference in
the formula bar, which
appears to the left of the
formula bar and shows the
cell reference of the
selected cell.

Click here to display or hide type markers, which are colored
frames displayed inside cells to identify the contents. Blue type
markers indicate blank formatted cells, green type markers indicate
values or text, and red type markers indicate formulas.

Chapter 4 Workbook Fundamentals 47
Note By default, Formula One uses Arial as the default font. Be sure you always
use a TrueType font as the default font in order for print and display scaling to
work correctly.

➤ To set the default font using the Workbook Designer:

1. Select Format > Default Font. The system will display the Default Font dialog
box, shown here.

2. Choose the default font options you want. Click OK when you finish.

➤ To set the default font programmatically:

■ Use the SetDefaultFont method to set basic defaults. Use the SetDefaultFontEx
method to set basic defaults and specify the character set.

A text sample with the font,
style, and size you chose
appears here.

Some fonts provide scripts
that allow you to use non-
Western alphabets.
Choose the script you want
here.

48 Formula One ActiveX User’s Guide
Setting Up the Color Palette
Formula One comes with a predefined color palette of 56 colors. You may use those
colors or you may define new colors. After you define new colors you may change
them back to the preset colors.

➤ To change colors in the color palette using the Workbook Designer:

1. Choose Tools > Options, click the Color tab, and the Color tab will appear, as
shown below.

2. Double-click on the color you want to change. The Windows color editor will
appear, allowing you to change the settings for the selected color.

➤ To change colors in the color palette programmatically:

■ Use the PaletteEntry property.

Manipulating Worksheets
Once you create a Formula One workbook, you should understand how to add, insert,
delete, name, and select the worksheets that are contained in your workbook. For
additional information about workbooks and worksheets, refer to “Understanding
Workbooks and Worksheets” on page 24.

Click here to return the
selected color to its default
value.

Click here to return all the
palette colors to their default
values.

Chapter 4 Workbook Fundamentals 49
The following illustration shows a Formula One workbook with three worksheets:

Inserting Worksheets
By default, a workbook contains only one worksheet. You can easily insert additional
worksheets via the Workbook Designer or program code.

➤ To add worksheets using the Workbook Designer:

1. Right-click on the Workbook control to display the context menu.

2. Select Workbook Designer.

3. Select Insert > Worksheet.

One new worksheet is inserted to the left of the selected worksheet as shown in the
following illustration:

Each of the three sheets is
identified by a name
displayed on a sheet tab.

Drag this splitter bar to shrink or enlarge the sheet tab space.Sheet Tab Space

Before adding a sheet

After adding a sheet

50 Formula One ActiveX User’s Guide
Sheet Index List
Each workbook maintains an indexed list of the worksheets it contains. Worksheets
are indexed from left to right beginning with 1. As you add worksheets, Formula One
adjusts the index numbers so the leftmost worksheet is always index 1. Most methods
and properties reference worksheets by index rather than name. It is important to
remember that the sheet index is different from the name that appears on the sheet
tab.

Notice in the previous illustration that the worksheet is given the next available name
“Sheet2.” However, Sheet2 is index 1 and Sheet1 is index 2.

Selecting Worksheets
Usually, you do most of your work in one worksheet at a time. This is called the
active worksheet. When you have multiple worksheets in a workbook, you can use
the mouse to click on a worksheet’s tab to make it the active sheet. The tab is
highlighted and moves on top of the other tabs.

You can save time and effort by performing some tasks on several sheets at once. For
example, if you want all three worksheets in your workbook to have the same title
information, you can select all three worksheets and enter the titles on the active
worksheet. The titles are automatically entered in the corresponding cells in the other
selected worksheets as well.

➤ To select multiple worksheets in the Workbook Designer:

1. Use one of the following key/mouse combinations, depending on whether you
want to select adjacent or non-adjacent worksheets:

Action Result

CTRL-Click on sheet tab Selects or deselects non-adjacent sheets. Any other selected
worksheets remain selected.

SHIFT-Click on sheet tab Selects all adjacent worksheets between the active worksheet
and the worksheet you clicked on. All other worksheets are
deselected.

Chapter 4 Workbook Fundamentals 51
The following illustration shows various groupings of selected worksheets:

➤ To select multiple sheets programmatically:

■ Use the SheetSelected property to toggle an individual worksheet’s selection
status to on.

The following example selects the second and third worksheets in the workbook:

SheetSelected (2) = True
SheetSelected (3) = True

Working with a Group of Worksheets
When multiple worksheets are selected, you can think of them as a group of
worksheets. When you perform some actions, execute some methods, or refer to
some properties, they affect all the selected worksheets. Other actions affect only the
active worksheet, regardless of how many worksheets are selected.

In the Workbook Designer, the following actions work on all selected worksheets:

■ changing cell selection

■ entering values via the formula bar

■ inserting rows, columns, or ranges of cells

■ deleting rows, columns, or ranges of cells

■ clearing rows, columns, or ranges of cells

■ setting TopLeft/Row/Column header text

■ setting column width

Sheet4 is the active sheet. All other sheets are
deselected.

If you hold down the Shift key and select
Sheet1, all sheets between the active sheet
(Sheet4) and Sheet1 are selected.

If you select all but one sheet, and then make
one of the selected sheets active by selecting
it, all the other sheets remain selected.

If you hold down the Control key and select
Sheet3, it is deselected, but the other sheets
remain selected.

52 Formula One ActiveX User’s Guide
■ setting row height

■ moving and copying with the mouse

Within your application code, the following methods and properties affect all
selected worksheets:

Inserting Multiple Worksheets
You can insert more than one sheet at a time and at any point in the sheet tab index.
The number and position of the inserted sheets depends on number and position of
the selected sheets in the workbook.

Methods that affect all selected worksheets

ClearRange ColWidthDlg CopyRange

DefColWidthDlg DefRowHeightDlg DeleteDlg

DeleteRange EditClear EditDelete

EditInsert FilePageSetupDlg FilePageSetupDlgEx

FormatAlignmentDlg FormatBorderDlg FormatCellsDlg

FormatFontDlg FormatNumberDlg FormatPatternDlg

FormatSheetDlg InsertDlg InsertRange

MoveRange ProtectionDlg RowHeightDlg

SetAlignment SetBorder SetBorderEx

SetCellFormat SetColWidth SetFont

SetFontEx SetPageSetup SetPattern

SetProtection SetRowHeight SetValidationRule

ValidationRuleDlg

Properties that affect all selected worksheets

ColText ColWidth EnableProtection

Entry EntryRC EntrySRC

Formula FormulaLocal FormulaLocalRC

FormulaLocalSRC FormulaRC FormulaSRC

HAlign HdrWidth HdrHeight

Logical LogicalRC LogicalSRC

Number NumberFormat NumberFormatLocal

NumberRC NumberSRC ProtectionHidden

ProtectionLocked RowText RowHeight

Text TextRC TextSRC

TopLeftText VAlign WordWrap

Chapter 4 Workbook Fundamentals 53
➤ To insert worksheets using the Workbook Designer:

1. Select the worksheet immediately to the right of where you want to insert the new
worksheets.

2. Select as many worksheets to the right of that worksheet as the number of
worksheets you want to insert.

For example, to insert two worksheets, select two worksheets.

3. Select Insert > Worksheet. The following illustration shows this process:

➤ To insert sheets programmatically:

■ Use the NumSheets property to increase the number of worksheets in the
workbook. Additional worksheets are added to the right of all existing
worksheets.

■ Use the InsertSheets method to add worksheets to the left of a specified
worksheet. The following example illustrates how this method can be used to
insert 2 worksheets to the left of the third worksheet in the workbook:

F1Book1.InsertSheets 3, 2

■ Use the SheetSelected property to select the number of worksheets you want and
then use the EditInsertSheets method. The following example selects the third
and fourth worksheets in the workbook and inserts two worksheets before the
third worksheet.

F1Book1.SheetSelected (3)
F1Book1.SheetSelected (4)
F1Book1.EditInsertSheets

Since Sheet2 and Sheet1 are selected, two additional worksheets are inserted to the left of Sheet2.
Notice that the newly inserted worksheets are given the next available sheet names, regardless of their
position in the sheet index list.

54 Formula One ActiveX User’s Guide
Deleting Worksheets
You can delete one or more worksheets from the sheet index list through the
Workbook Designer or through application code.

➤ To delete worksheets in the Workbook Designer:

1. Select the worksheets you want to delete.

2. Select Edit > Delete Sheet.

The following illustration shows this process:

➤ To delete worksheets programmatically:

Two methods delete worksheets: DeleteSheets and EditDeleteSheets. DeleteSheets
takes arguments that define the position and number of worksheets to be deleted.
EditDeleteSheets deletes the currently selected worksheets.

■ Use the NumSheets property to decrease the total number of worksheets.
Worksheets are deleted from the right.

■ Use the DeleteSheets method to delete specific worksheets. The following
example uses this method to delete the third and fourth worksheets from the
workbook:

F1Book1.DeleteSheets 3, 2

■ Use the SheetSelected property to select sheets and then use the
EditDeleteSheets method. The following example selects the first and fourth
worksheets and then deletes them:

F1Book1.SheetSelected (1)
F1Book1.SheetSelected (4)
F1Book1.EditDeleteSheets

The selected worksheets are deleted.

Chapter 4 Workbook Fundamentals 55
Renaming Worksheets
Formula One provides a default name for each worksheet. You can change the names
to more meaningfully describe the sheets’ contents. For example, the sheet names in
the following illustration are more descriptive than the worksheets’ default names.

➤ To name a worksheet in the Workbook Designer:

1. Select Format > Sheet > Properties and select the General tab.

2. Type a name for the sheet in the Name text box.

3. Click OK.

➤ To edit a sheet name programmatically:

■ Use the SheetName property to rename a worksheet identified by index. The
following code changes the name of the second worksheet in the workbook to
QTR 2 Sales.

F1Book1.SheetName (2) = "QTR 2 Sales"

Setting Display Options for Worksheets
Just as you can display or hide different parts of the Workbook Designer, you can
display or hide different parts of worksheets. You may hide the column and row
headings and the gridlines.

You may display the worksheet at regular size, shrunk down, or enlarged. You may
also choose how many rows and columns you want to display. The default number of
rows and columns displayed is the maximum (65,536 rows by 256 columns). You
may display fewer. Rows and columns beyond the display limits you specify will not
be seen, but they can hold data and formulas.

Double-click the sheet tab to display
the Sheet Name dialog box.

Type a new name in the
Sheet Name dialog box.

56 Formula One ActiveX User’s Guide
Finally, you may specify how you want to display formulas and zero values.

➤ To change display options for worksheets in the Workbook Designer:

1. Select the worksheet(s) whose display settings you want to change.

2. Select Format > Sheet > Properties and click the View tab. The View tab will
appear, as shown below.

3. Select the worksheet and data viewing options you want by selecting or
unselecting the options in the Sheet and Data values.

4. To display the worksheet larger or smaller than its actual size, enter a value from
10 to 400 in the View Scale box.

5. To display fewer than the maximum number of rows and columns, enter the range
that you want to display, in absolute references, in the Sheet Limits box.

6. Click OK.

➤ To change display options for worksheets programmatically:

■ Use the ShowFormulas, ShowGridLines, ShowZeroValues,
ShowRowHeading, ShowColHeading, ViewScale, MaxRow, and MaxCol
properties.

Navigating Through Worksheets
When working in the Workbook Designer or in a workbook at run time, you can
navigate within individual worksheets using mouse actions or keyboard commands.

To display formulas, select this option. To display values that the formulas calculate, uncheck this
box. When formulas are displayed, Formula One automatically doubles the width of columns to
accommodate the wider text. When the Formulas option is later unselected, column widths return to
their original settings.

To display zeroes in cells,
select this option. To leave
cells with zero values empty,
unselect this option.

Chapter 4 Workbook Fundamentals 57
Navigating with the Mouse
Primarily the mouse is used to select items in a worksheet at run time. The following
table lists the mouse actions you can perform in a worksheet at run time or in the
Workbook Designer.

Action Description

Left-Click Moves the active cell to the pointer position.

Right-Click In the container’s design mode, brings up the context menu.

Wheel-click (on the
IntelliPoint mouse) or middle
click

Invokes or cancels scrolling mode, which allows users to
scroll by moving the mouse over the worksheet. To disallow
scrolling mode, hide the scroll bars using the
ShowHScrollBar and ShowVScrollBar properties.

Left-Click in Row or Column
Headings

Selects entire row or column.

Left-Click in Top Left Corner Selects entire sheet.

Left Double-Click in Top Left
Corner, Row Headings,
Column Headings, or
Worksheet tabs

Displays a dialog box that allows you to enter a label for the
top left corner or the column or row heading, or a new name
for the worksheet that was double clicked.

Left Double-Click In the Workbook Designer, invokes in-cell editing.

At run time, a DblClick event is fired.

Right Double-Click In the Workbook Designer, does nothing.

At run time, the Workbook Designer is launched if
DoRDblClick is False.

Left-Click and Drag Selects a range. If other ranges are selected, the previously
selected ranges are unselected.

CTRL + Left-Click and Drag Selects a range. If other ranges are selected they remain
selected.

SHIFT + Left-Click and Drag Extends the current selection.

CTRL + SHIFT Click on Row
Headings, Column Headings,
or Top Left Corner

Selects the row headings, column headings, or top left corner
of the sheet.

Drag a Selection's Copy
Handle

Copies the selection into the newly selected area.

Drag a Selection’s Border Moves the selection to a new location.

ALT + Click and Drag an
Object or Object’s Selection
Handles

Repositions or resizes an object and aligns object sides with
the cell grid.

58 Formula One ActiveX User’s Guide
Navigating with the Keyboard
In addition to navigating through worksheets, keyboard commands allow you to
perform a variety of other tasks.

Keyboard commands allow you to:

■ position the active cell in the worksheet

■ page through a worksheet

■ enter data typed in a cell

■ move the active cell within a selected range

■ enter and exit edit mode

■ recalculate a workbook

■ delete data from a selected cell or range

The tables in this section list the keyboard commands you can use when working in
the Workbook Designer or a workbook at run time.

The following table lists action keys that allow you to enter and edit data, move the
active cell within a selected range, and recalculate the workbook.

The following table lists the movement keys that allow you to move the active cell
within a worksheet and display different sections of the workbook.

Key Description

ENTER When in edit mode, accepts the current entry. When a range is selected, and
if the EnterMovesDown property is set to True, accepts the current entry and
moves active cell vertically to next cell in selection.

SHIFT +
ENTER

When in edit mode, accepts the current entry. When a range is selected, and
if the EnterMovesDown property is set to True, accepts the current entry and
moves active cell vertically to previous cell in selection.

TAB When in edit mode, accepts the current entry and moves the active cell
horizontally to right.

SHIFT +TAB When in edit mode, accepts the current entry and moves the active cell
horizontally to left.

F2 Enters edit mode. While in editing mode, F2 displays the Cell Text dialog
box, in which you can enter multi-line data entries.

F9 Recalculates workbook.

DEL May clear current selection depending on the setting of the AllowDelete
property.

Escape Cancels current data entry or editing operation.

Key Description

Up Arrow Moves active cell up one row.

Down Arrow Moves active cell down one row.

Left Arrow Moves active cell left one column.

Chapter 4 Workbook Fundamentals 59
The following table lists the keys that modify the action of the movement keys.

Right Arrow Moves active cell right one column.

CTRL
Up/Down/Left/Right

Moves to the next range of cells containing data. If there is no
additional data in the direction in which you are moving, moves to the
edge of the worksheet.

Page Up Moves up one screen.

Page Down Moves down one screen.

CTRL Page Up Activates the previous worksheet in the current workbook.

CTRL Page Down Activates the next worksheet in the current workbook.

Home Goes to first column of current row.

End Goes to last column of current row that contains data.

CTRL Home Goes to row 1 column 1.

CTRL End Goes to last row and column that contains data.

Key Description

Scroll lock Causes the view window to scroll without changing current selection with
all movement keys except Home, End, CTRL Home, and CTRL End.

SHIFT plus any
movement key

Extends the current selection.

Key Description

60 Formula One ActiveX User’s Guide
Selecting Cells
Many operations require one or more cells to be selected. There are three kinds of
selections: a single cell, a range of cells, and multiple ranges of cells (non-adjacent).
The following illustration shows the three types of selections.

Selecting Cells with the Mouse
The worksheet cursor is always located on a cell. The cell on which the worksheet
cursor is located is called the active cell. The active cell is also a selection or part of a
selection. Any data the user enters is always placed in the active cell.

■ To select a range of cells, click and hold the left mouse button and drag through
the range you want to select. When a range is selected, it becomes highlighted.

■ To select multiple ranges, press the CTRL key while selecting a range with the
mouse. Any previously selected ranges remain selected.

Once a range is selected, you can move the active cell within the range using the
ENTER, SHIFT + ENTER, TAB, and SHIFT + TAB keys. When you use these keys
to move the active cell, the range remains selected.

Single cell selection

Single range selection

Multiple range selection

Chapter 4 Workbook Fundamentals 61
Selecting Cells with Properties and Methods
The following properties and methods can select ranges.

■ Setting the Selection property removes all current selections and selects a range.

■ The AddSelection method adds a selection to the current selection list. Continue
calling AddSelection to create multiple selections.

The following example selects two ranges. The range “my_select” is selected, which
is the name for A1:D4, and then the E5:H8 range is added.

F1Book1.Selection = "my_select" ’Select A1:D4
F1Book1.AddSelection 5, 5, 8, 8 ’add e5:h8

In addition, the following properties retrieve information about multiple selections.

■ The value of the SelectionCount property tells you the number of selections. You
can use this if a selection is made by the user and you need to determine how
many ranges are selected.

■ The value of the Selection property gives you all current selections in the form of
a formula (e.g. A1:D4,E5:H8).

■ The SelectionEx property used with the F1RangeRef API object returns the row
and column of the specified selection.

The following example returns the value of a specified selection and adds another
column to the selection.

Dim sel As F1RangeRef
Dim cnt As Integer
For cnt = 0 To (F1Book1.SelectionCount - 1)
Set sel = F1Book1.SelectionEx(cnt)
F1Book1.AddSelection sel.StartRow, sel.StartCol, sel.EndRow,

sel.EndCol + 1
Next cnt
End Sub

Selecting Rows and Columns
Entire rows and columns can be selected in the worksheet at run time or in the
Workbook Designer using the mouse. To select a row or column, position the pointer
on the header of the row or column you want to select. When you click the header,
the row or column is selected.

You can also select all rows and columns in the worksheet. To do this, position the
pointer on the top left header and click.

62 Formula One ActiveX User’s Guide
Setting Selection Options
You may prevent users of your worksheet from selecting cells and/or objects. You
may also choose to display the worksheet in row mode, which specifies that an entire
row be selected when a user selects a cell in that row. Row mode is a nice feature in
applications where each row represents a particular record: it makes it obvious which
row the user is currently working on and facilitates copying and pasting entire rows.

➤ To set selection options in the Workbook Designer:

1. Select the worksheet(s) whose selection options you want to change.

2. Select Format > Sheet > Properties and click the Selection tab. The Selection tab,
displayed below, will appear.

3. Choose the selection options you want. Click OK when you are done.

➤ To set selection options programmatically:

■ Use the AllowSelections, AllowObjSelections, and RowMode properties.

To prevent users from
selecting cells, rows,
columns, graphical objects,
or worksheets, uncheck this
option.

To prevent users from
selecting graphical objects,
uncheck this option.

To specify that the entire row should be selected whenever an individual
cell in that row is selected, check this option.

Chapter 5 Working With Data 63
C H A P T E R 5

Working With Data

Entering and manipulating data is the basis for nearly all work performed in a
workbook control. You can enter virtually any type of data and formula. With
formulas and built-in functions, you can evaluate and calculate that data and make
decisions based on the results of those operations.

This chapter discusses:

■ how to enter data directly or with methods and properties

■ how to use autofill lists

■ the types of constant values that can be entered

■ how to construct and use formulas

■ the suite of built-in worksheet functions

■ using names

■ the methods for calculating worksheets

■ how to limit user data entry

Understanding Worksheet Data Entry
One of the basic tasks encountered when working with a workbook is data entry.
Formula One provides several methods for entering data.

■ Direct entry. This is the most direct method of data entry. Data can be entered
directly in a worksheet at run time. Or, you can enter data in the Workbook
Designer at design time.

■ Properties and methods. Several properties and methods allow you to enter data in
the active cell or a specified cell.

64 Formula One ActiveX User’s Guide
Adding the Formula Bar
You can enter data into a worksheet by typing directly into a cell, or by typing into
the formula bar.

The formula bar appears by default in the Workbook Designer, and you can turn on
or off the display of the formula bar and cell reference indicator in your workbook
control.

➤ To control the display of the formula bar in the Workbook designer:

■ Select View > Formula Bar to toggle the display of the formula bar.

➤ To add a formula bar to your control:

■ Set the ShowEditBar property to True.

■ If the ShowEditBar property is True, you can also set the ShowEditBarCellRef
to True to display the cell reference indicator with the formula bar.

Important The formula bar does not appear on the control unless the container
makes it UI Active (provides a window for it).

Entering Data with Properties
Formula One provides a full complement of properties for entering data. In addition
to entering data in the active cell, a number of methods allow you to enter data in a
cell you specify.

The following table lists the properties involved in entering data.

Property/ Method Description

Entry Sets or returns the value of the current cell in edit mode format.

EntryRC Sets or returns the value of the specified cell in edit mode format.

EntrySRC Sets or returns the value of the specified cell in edit mode format.

FormattedText Sets or returns the value of the current cell as it appears in the
worksheet.

FormattedTextRC Returns the value of the specified cell as it appears in the worksheet.

Formula Bar

Cell Reference
Indicator

Chapter 5 Working With Data 65
Entering Multi-Line Data
A single cell can contain as many as nine lines or 256 characters of data. When
entering the data, new lines of data are specified within the cell by entering carriage
return/line feeds.

■ When entering data interactively in the Workbook Designer or in a worksheet at
run time, press F2 when editing a cell. The Cell Text dialog box is displayed in
which you can enter the cell data. To enter a line feed, press RETURN. Click the
OK button to accept the entry and return to normal worksheet editing.

■ When entering data with properties or methods, you should specify line feeds
with the ANSI character code 10.

After entering multi-line data, you may need to resize the row and column in which
the entry is placed in order to view all the data. The following example uses the
TextRC property to enter three lines of data in cell A1.

F1Book1.TextRC(1,1) = “Regional Sales” & Chr$(10) & “FY ‘94” &
Chr$(10) & “Q2”

FormattedTextSRC Sets or returns the value of the specified cell as it appears in the
worksheet.

Formula Sets or returns the formula in the active cell.

FormulaLocal Sets or returns the text version of the formula in the active cell, in the
user’s language.

FormulaLocalRC Sets or returns the text version of the formula of the specified cell, in
the user’s language.

FormulaLocal SRC Sets or returns the text version of the formula of the specified cell, in
the user’s language.

FormulaRC Sets or returns the formula in the specified cell.

Logical Sets or returns the formula in the active cell.

LogicalRC Sets or returns the logical value of the specified cell.

Logical SRC Sets or returns the logical (True or False) value of the specified cell.

Number Sets or returns the numeric value of the active cell.

NumberRC Sets or returns the numeric value of the specified cell.

Number SRC Sets or returns the numeric value of the specified cell.

Text Sets or returns the text value of the active cell.

TextRC Sets or returns the text in the specified cell.

TextSRC Sets or returns the text value of the specified cell.

Property/ Method Description

66 Formula One ActiveX User’s Guide
The following illustration shows the results of this example.

You can also enter multi-line row and column headers. Refer to Formatting Row and
Column Headings in Chapter 7 for information about entering and formatting row
and column headers.

Understanding Worksheet Data Types
Cells can contain two types of information: constant values and formulas.

■ Constant values are numbers (including dates and times), logical values, error
values, and text.

■ Formulas are groups of constant values, cell references, names, functions, and
operators that result in a new value when calculated or evaluated.

Entering Constant Values
Numbers. Numeric entries can contain numeric characters (e.g., 1, 2, 3, 4, 5, 6, 7, 8,
9, and 0) and the special characters (e.g., +, -, (,), /, $, %, ., E, and e).

■ Negative numbers can be preceded by a minus sign or enclosed in parentheses.

■ Commas can be included in numeric entries as thousands separators.

■ Numeric entries containing leading dollar signs (or other currency signs, such as £
for pounds) are formatted as currency.

■ Numeric entries containing trailing percent signs are formatted as percentages.

Formula One accepts numeric entries as fractions. If the fraction contains a leading
integer (e.g., 1 1/3) it can be entered directly. If there is no leading integer, the
fraction should be preceded by a zero (e.g., 0 2/3).

Numbers larger than the cell in which they are entered are converted to scientific
notation unless a specific format is applied.

Use the SetColWidthAuto method to automatically set the column width to the
correct size for all data in the column. The following code automatically sets the
widths of columns 1 through 10.

F1Book1.SetColWidthAuto -1, 1, -1, 10, False

The multi-line entry is placed in cell A1.
Row 1 and column A have been resized so
the entry is not cropped.

Chapter 5 Working With Data 67
Dates and Times. Dates and times are automatically recognized by Formula One.
They are entered in the cell as values and automatically formatted. The following
date and time formats are automatically recognized.

* These formats are locale-dependent. For example, in the United Kingdom, 15/3/94
would be recognized as the date format d/m/yy.

Text. Text is any set of characters that Formula One does not recognize as a number,
date, or time.

Text that is wider than a cell ordinarily spills over into the cell immediately to the
right. You can specify that text should wrap within the cell by enabling word wrap in
your alignment format settings.

Logical and Error Values. Logical and error values are not normally entered directly
in cells; they are usually the result of a formula. However, entering these values can
be useful for testing formulas.

The logical values that can be entered are TRUE and FALSE. The error values that
can be entered are #N/A, #VALUE!, #REF!, #NULL!, #DIV/0!, #NUM!, and
#NAME?.

Entering Formulas
Formulas are the basic building blocks for analyzing and calculating worksheet data.
A formula is a string containing numbers, operators, worksheet functions, cell
references, and names. A formula can contain as many as 1024 characters.

■ When you manually enter a formula in a worksheet, you must begin the entry
with an equal sign (=). Formula One recognizes this entry as a formula.

■ When entering a formula using the Formula, FormulaRC, and FormulaSRC
properties, exclude the leading equal sign. These entities expect strings.

Numbers in formulas can be followed by a percent sign (%). Numbers with trailing
percent signs are treated as percentages (e.g., 100% is evaluated as 1).

Entered Format Assigned

3/15/94 m/d/yy *

15-Mar-94 d-mmm-yy

15-Mar d-mmm

Mar-94 mmm-yy

9:55 PM h:mm AM/PM

9:55:33 PM h:mm:ss AM/PM

21:55 h:mm

21:55:33 h:mm:ss

3/15/94 21:55 m/d/yy h:mm *

68 Formula One ActiveX User’s Guide
If text is encountered when a number is expected, the text is converted to a number.
For example, the formula 1 + “3” returns 4, because “3” is converted to a number. If
the text cannot be converted to a valid number (e.g., 1 + “Text”), #VALUE! is
returned.

Likewise, if a number is encountered when text is expected, the number is converted
to text. The formula “The number is ”&3 converts to the text string “The number is
3”.

The value TRUE always converts to 1; FALSE converts to 0. If a number is
encountered when a logical value is expected, a zero is converted to FALSE. All
other numbers are converted to TRUE. If text is encountered when a logical value is
expected, “TRUE” is converted to TRUE; “FALSE” is converted to FALSE. All other
text returns #VALUE!.

Dates and times are recognized and converted to their serial values. For example,
“10/10/94” - “10/1/94” equals 9.

Using Formula Operators
When creating formulas, Formula One provides a set of operators for specifying the
type of calculation or evaluation to be performed on the formula data. The following
table lists the formula operators.

Operator Type Operator Description

Arithmetic + Addition

- Subtraction

/ Division

* Multiplication

% Percentage

^ Exponentiation

Text & Concatenation

Comparison = Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less then or equal to

<> Not equal to

Reference :, .., . Range - produces a reference that includes all the cells
between the two references (e.g., A1:A5 includes cells A1 and
A5 and all cells in between).

, Union - produces one reference that includes the two
references (e.g., A1:A10,C1:C10).

Chapter 5 Working With Data 69
Using Operator Precedence
When combining operators in a formula, Formula One uses a specific order of
precedence to calculate the formula. The following table lists the order of precedence
for formula operators.

Operators of like precedence are evaluated left to right. Parentheses should be used
when it is necessary to change the order of evaluation. The following example
illustrates how the result of a formula can be altered by adding parentheses to change
the order of precedence.

As illustrated in the previous table, the multiplication operator (*) has higher
precedence than the addition operator (+). It is evaluated first unless parentheses are
used to force the addition to take place first.

Understanding Cell References
A reference identifies a cell by referring to the row and column coordinates of the
cell. References are based on the row and column headings. For example, A1 refers
to the cell at the intersection of row 1 and column A. References can be used in
formulas to access data from a worksheet.

A range of cells is specified by placing a colon (:) between two cell references. For
example, the reference A1:C3 refers to the range anchored by cells A1 and C3. The
range includes all cells in columns A, B, and C of rows 1, 2, and 3.

Operator Description

() Parentheses

:, .., . Range

, Union

- Negation (single operand)

% Percentage

^ Exponentiation

* and / Multiplication and Division

+ and - Addition and Subtraction

& Text concatenation

= < > <= >= <> Comparison

Formula Result

1+2*37 75

(1+2)*37 111

70 Formula One ActiveX User’s Guide
Absolute and Relative References
There are two types of cell references: relative and absolute.

■ Relative references point to a cell based on its relative position to the current cell.
When the cell containing the reference is copied, the reference is adjusted to point
to a new cell with the same relative offset as the originally referenced cell.

■ Absolute references point to a cell at an exact location. When the cell containing
the formula is copied, the reference does not change. Absolute references are
designated by placing a dollar sign ($) in front of the row and column that is to be
absolute.

References can be part absolute and part relative. These are called mixed references.
The following table lists the reference types.

The reference operators can be used to specify multiple ranges in the same reference.
For example, A1:C1,A10:C10 specifies the three cells A1, B1, and C1 and the three
cells A10, B10, and C10. The formula =SUM(A1:C1,A10:C10) adds the values in all
six cells.

References to Other Worksheets
You can reference cells in other worksheets in the same or different workbooks.

To reference a worksheet in the same workbook, use the following syntax:

Sheet3!A1

To reference a worksheet in a different workbook, use the following syntax:

[F1Book1]Sheet1!A1:B2

Workbooks are referenced by the value of their Title property, and must be loaded in
another control for the reference to work.

References to Multiple Worksheets
You can also refer to multiple worksheets, or ranges in multiple worksheets. The
following example references cell A1 in Sheet1 and cell A1 in Sheet2.

Sheet1:Sheet2!A1

Reference Type

A1 Relative reference pointing to cell A1.

A1 Absolute reference pointing to cell A1.

$A1 Absolute column reference, relative row reference pointing to cell A1.

A$1 Relative column reference, absolute row reference pointing to cell A1.

Chapter 5 Working With Data 71
Important Worksheets must be referenced in index order. For example, the reference
to the sheet indexed 1 must come before the reference to the sheet indexed 2.
Remember that the worksheet index is usually different that the sheet name that
appears on the sheet tab. Worksheets are indexed from left to right, beginning with 1.

The following syntax references the range A1 to B2 in Sheet1 and the range A1 to
B2 in Sheet2.

Sheet1:Sheet2!A1:B2

You can also reference multiple worksheet ranges in different workbooks by
referencing the workbook name at the beginning of the syntax.

[F1Book1]Sheet1:Sheet2!A1
[SSView2]Sheet1:Sheet2!A1:B2

External References
References can point to cells in other workbooks. This type of reference is called an
external reference. An external reference is created by placing a workbook name in
brackets, followed by the worksheet name and an exclamation point, and finally a
cell reference. The following table shows examples of external references.

Automatically Entering Cell References
Cell references can be automatically entered as you enter a formula.

➤ To automatically enter a cell reference:

1. Enter the formula to the point of the range reference.

2. With the mouse, select the cell or range you want to reference.

The reference of the range you select is automatically placed in the formula.

When you enter a cell reference in this manner, Formula One assumes it is a
relative reference.

Reference Type

[Sales]Sheet1!A1 Relative reference pointing to cell A1 in the first
worksheet of a workbook titled Sales.

[FY91]Sheet2!A1 Absolute reference pointing to cell A1 in the second
worksheet of a workbook titled FY91.

[Q1]Sheet1:Sheet2!$A1 Absolute column reference, relative row reference
pointing to cell A1 in the first and second worksheets
in a workbook titled Q1.

[Store1]Sheet1:Sheet4!A1:F1 Relative row and column reference, pointing to the
range A1 to F1 in a workbook titled Store1.

72 Formula One ActiveX User’s Guide
Understanding Worksheet Errors
When a formula cannot be properly calculated, an error is returned in the cell. The
following table lists the errors that can be generated.

Displaying Formulas
It is often convenient to display formula text instead of the values they produce.
Setting ShowFormulas to True, causes the worksheet to display formula text instead
of formula results. Displaying formula text can help you debug formula- related
problems.

The following example enables and disables the display of formulas.

F1Book1.ShowFormulas = TRUE ’Displays formulas
F1Book1.ShowFormulas = FALSE ’Displays formula text

Built-In Worksheet Functions
Formula One contains a set of 143 built-in worksheet functions that provide the
ability to perform complex calculations with very little work.

Error Cause

#ARRAY_FORMULA! Formula One read an Excel file that contained an array formula.
Since this feature is not supported in Formula One, this error
value is placed in the cell that used to contain the array formula.

#DIV/0! Divide by zero. May be caused by a reference to a blank cell or a
cell containing zero.

#N/A No value is available. May be caused by inappropriate values in
the formula or a reference to a cell containing the #N/A value.

#NAME? Name is not recognized. May be caused by a user defined name
that is not defined.

#NULL! Null intersection. An intersection of two ranges was defined that
does not intersect.

#NUM! Number problem. May be caused by inappropriate numbers in
functions, an iteration that cannot solve for a value, or a formula
that results in a number too large or too small to represent.

#REF! Reference error. May be caused by referring to a cell that was
deleted.

#VALUE! Wrong argument type. May be caused by entering text where a
number was expected, or supplying a range to an operator or
function that was expecting a single value.

Chapter 5 Working With Data 73
Worksheet functions:

■ calculate and evaluate data

■ can be used alone or in a formula

■ are entered directly in the worksheet

Like formulas, worksheet functions return data to the cell in which they are entered.

Each function performs a specific calculation. The SQRT function is an example of a
built-in function. With this function, you can easily calculate the square root of a
number. The following example calculates the square root of 118:

=SQRT(118)

Understanding Functions
Most worksheet functions are composed of keywords and arguments. Every
worksheet function contains a keyword, but not all functions require arguments.

■ The keyword identifies the function and tells the worksheet what type of
calculation or evaluation is performed. Each function keyword is unique.

■ Arguments provide the data for the function to calculate or evaluate. The
arguments for a function immediately follow the function keyword and are
enclosed in parentheses.

Entering Functions
When entering functions in a worksheet, all functions are preceded by an equal sign
(=). The leading equal sign tells the worksheet that the following information is to be
evaluated or calculated.

The function keyword follows the equal sign. It can be entered in lowercase or
uppercase characters. After the function is entered, the worksheet records the
function keyword in uppercase characters, regardless of how it was entered.

If a function requires multiple arguments, the arguments are separated by commas.
Some functions contain optional arguments. If you omit an optional argument, a
default value is assumed for the argument.

Functions that do not require arguments still require a set of parentheses following
the function keyword.

Nesting Functions
A function can be used as an argument for another function. When a function is used
in this manner, you are nesting functions. The nested function must return the
appropriate type of data for the function in which it is nested. You must also provide
the necessary arguments for the nested function.

74 Formula One ActiveX User’s Guide
In the following example, the AVERAGE function is used as an argument for the
SUM function. In this case, AVERAGE is nested in SUM.

=SUM(5.23, 6.82, AVERAGE(2.45, 5.62, 7.74), 8.95, 9.01)

Entering Arguments
The arguments for a function can be:

■ Numerical values

■ Logical values

■ Text strings

■ Error values

■ References to cells or ranges

Each argument requires a specific type of data. Refer to Chapter 14, A-Z Worksheet
Function Reference, to determine the type of data required for the function you are
entering.

For most arguments, you can substitute a cell or range reference for the data required
by an argument. For example, if an argument requires a number, you can substitute a
reference to a cell that contains a number. The number in the referenced cell is used
in the calculation of the function. The data in the referenced cell must be appropriate
for the argument for which it is used.

Syntax Errors
If the worksheet function you enter contains syntax errors, Formula One does not
allow the function to be entered. You must correct the errors before proceeding with
other tasks.

Using Autofill Lists
If you frequently use lists of names, months, or days of the week in your worksheet,
you can let Formula One do some of the work for you by using the autofill feature.

Formula One’s default autofill lists contain frequently used series of text such as
months and days of the week. When you enter one of the elements in these lists and
drag the autofill handle, Formula One enters the rest of the data from the list as
needed to fill the range you mark.

When Formula One
recognizes this text as part
of an autofill list, and . . .

you drag the fill handle to
this position, the cells in
the marked range are
automatically filled with
items from the list.

Chapter 5 Working With Data 75
Once Formula One has recognized the text as an item from an autofill list, pressing
Tab puts the next list item in the next cell to the right, or Enter puts the next list item
in the next cell below.

Adding Autofill Lists
You can add custom autofill lists that include frequently used series of text with the
AutoFillItems property. You can also access the AutoFill tab using the OptionsDlg
method (F1AutoFillPage).

➤ To add a new autofill list using the AutoFillItems property:

■ Use the AutoFillItemsCount method to determine the number of autofill lists.
Then increment by one and use the AutoFillItems property to specify the new
list. The following example illustrates:

F1Book1.AutoFillItems (F1Book1.AutoFillItemsCount+1) =
➥ "A;B;C;D;E;F;G;H;I;J;K;L;M;N;O;P;Q;R;S;T;U;V;W;X;Y;Z"

Note Values recognized as data cannot be used as autofill list items, such as
1973;1974, 1a;1b, 1%;2%.

➤ To add a new autofill list using the OptionsDlg method:

1. Use the following code:
F1Book1.OptionsDlg (F1AutoFillPage)

2. The following dialog box is displayed:

3. Select (New List) from the Lists list.

4. Type your new autofill list in the Current List text box, separating each item with
a semi-colon.

5. Click Add.

When (New List) is
selected, you can type
your custom list in the
Current List text box.

You can also edit default
lists using this text box.

76 Formula One ActiveX User’s Guide
Deleting Autofill Lists
You can delete an autofill list using the AutoFill tab by selecting a list and clicking
the Delete button. You can also delete a default or custom autofill list using the
DeleteAutoFillItems method.

➤ To manipulate an autofill list programmatically:

■ Get the current string of text that makes up a list by returning the value of the
AutoFillItems property.

list = F1Book1.AutoFillItems(2)

■ Replace a list by setting the AutoFillItems property.

list = "1st Qtr;2nd Qtr;3rd Qtr;4th Qtr"
F1Book1.AutoFillItems(2) = list

■ Delete a list with the DeleteAutofillItems method.

F1Book1.DeleteAutoFillItems (F1Book1.AutoFillItemsCount -2)

Using Names
User-defined names are an easy way to identify a cell, a group of cells, a value, or a
formula. For example, the formula “= Sales - Expenses” is much clearer than
“A10 - A6”.

You can also use names to identify constants and formula expressions. For example,
you might define the name LightSpeed as 186000. You could then use the name
LightSpeed in all your formulas. Or, you could define the name SqRtTwo as the
formula SQRT(2).

➤ To define names in the Workbook Designer:

1. If you are naming a range, select it.

2. Select Insert > Name.

3. Enter a name that describes the cell reference in the Name text box. Do not use
spaces in the name.

A cell or range reference that represents your selection from step 1 is displayed in
the Formula text box. You can edit this reference, if desired.

4. Click Add to add the new name to the list.

You can delete any name from the list by selecting it in the list and clicking
Delete.

➤ To define names programmatically:

■ Use the DefinedName property. The following code uses this property to define a
name.

F1Book1.DefinedName ("Sales") = "A10"

Chapter 5 Working With Data 77
This example defines the name “Sales” as A10. The name “Sales” can then be
used in formulas instead of the reference.

Formula One has a set of built-in names. These names are used by the print
functions. The built-in names are listed in the following table.

Calculating Worksheets
Formula One calculates cells in natural order. In natural order calculation, formulas
are calculated in such a way that all dependencies are calculated before their
dependents. This ensures that the formula results are always correct.

When a worksheet is edited, Formula One first adjusts formula references so they
point to the correct cells. Then, Formula One determines the natural order of the
formulas.

When a change is made to a cell, the formulas are recalculated to keep all worksheets
in the workbook current, ensuring that data is always valid.

Setting Automatic Recalculation
Normally, automatic recalculation is enabled, which means the worksheet is
recalculated each time a cell is changed and system processing is idle. For
moderately sized worksheets, recalculation operations happen in a fraction of a
second. But for large worksheets or situations where many cells are changed by code,
this reorganization and recalculation process can slow system processing.

In these situations, you may disable automatic recalculation while your code operates
on the worksheet. After the operation is completed, you may enable automatic
recalculation to update the worksheet. Automatic recalculation can be disabled using
the Workbook Designer or with the AutoRecalc property or the OptionsDlg method.

Built in Name Purpose

Print_Area Defines the print area used during printing. This name can contain one or
more ranges (e.g., A1:C3,A11:C13).

Print_Titles Defines the row and column titles that are printed on each new page.
Entire rows and columns must be selected when you define this name.

78 Formula One ActiveX User’s Guide
➤ To change automatic recalculation using the Workbook Designer:

1. Select Tools > Options and click the Calculation tab, shown below.

2. Select the Automatic Recalc option to turn auto recalc on, or unselect it to turn it
off.

3. Click OK.

➤ To change automatic recalculation programmatically:

■ The following code uses the AutoRecalc property to disable the automatic
recalculation setting.

F1Book1.AutoRecalc = FALSE ’Disables automatic recalculation

Setting Minimal Recalculation
Minimal recalculation means that, when Formula One needs to recalculate the
formulas on the worksheet, it only recalculates cells that refer to cells that have
changed. Cells and references to cells that have not changed are left alone. This will
often cause a dramatic improvement in recalculation speed. By default, minimal
recalculation is on.

When minimal recalculation happens is determined by the setting of the AutoRecalc
property. When AutoRecalc is set to True, minimal recalc will be called whenever
the worksheet changes. If AutoRecalc is off, minimal recalc will be called when the
user presses F9 or uses the Recalc method.

The CALL, COLUMNS, INDEX, INDIRECT, NOW, OFFSET, RAND, ROWS, and
TODAY worksheet functions must be reevaluated during every recalc to ensure
accurate results. Formulas that use these functions are reevaluated during every
recalc operation regardless of whether minimal recalc is on or off.

You may encounter an unusual instance where minimal recalculation slows
worksheet processing speed. In these cases, you may want to turn minimal
recalculation off.

Uncheck this option to disable
automatic recalculation.

Chapter 5 Working With Data 79
➤ To change minimal recalculation in the Workbook Designer:

1. Select Tools > Options and click the Calculation tab, shown on page 78.

2. Select the Minimal Recalc option to turn minimal recalc on, or unselect it to turn
it off.

3. Click OK

➤ To change minimal recalculation programmatically:

Use the MinimalRecalc property.

Solving Circular References
In some circumstances, a formula refers to its own cell, either directly or indirectly.
This is called a circular reference. To solve a formula that contains a circular
reference, iteration must be used. Iteration is the process of repeatedly calculating a
worksheet until a specific condition is met.

Formula One supports iteration using the IterationEnabled, IterationMax, and
IterationMaxChange properties; the GetIteration and SetIteration methods; and
the OptionsDlg (F1CalculationPage) method. These properties and methods allow
you to specify the maximum number of iterations and the maximum change between
iterations. The iteration continues until one of those two conditions is met.

The following example involves a circular reference:

Suppose your small business has 10,000 shares of stock owned by four shareholders.
You decide to let a fifth shareholder enter your partnership. In return for his
investment, you give him 10 percent of the company. How many more shares will the
company have to issue to give the new investor 10% of the company?

The following illustration shows the results of this example as it is entered in a
worksheet.

➤ To control the number of times a circular reference is calculated using the
Workbook Designer:

1. Select Tools > Options and select the Calculation tab, shown on page 78.

2. Click the Iteration check box to limit iteration for calculating circular references.

The formulas in B2 and B3 create
a circular reference in this
example worksheet.

The first worksheet shows the
formula text, the second
worksheet shows the results of the
formulas.

80 Formula One ActiveX User’s Guide
3. In the Maximum Iterations text box, type the maximum number of iterations you
want Formula One to execute.

4. In the Maximum Change text box, type the maximum change between iterations.
The smaller the number, the more accurate your answer is.

5. Click OK.

Limiting Data Entry
Some applications might require that the user not be allowed to enter or edit data.
Formula One gives you many options for restricting data entry.

Denying Access to a Workbook
You may make an entire workbook and all the worksheets in it read-only. Any data
manipulation in such a workbook must be done programmatically. You may deny
access to a workbook using the Workbook Designer or using properties and methods

➤ To use the Workbook Designer to make a workbook read-only:

You must hide the formula bar and disable all of the user’s editing options.

1. To hide the formula bar, select View > Formula bar. Make sure the option is
unselected.

2. To disable users’ editing options, first select all the worksheets in the workbook.

3. Choose Format > Sheet > Properties and click on the Edit tab. The Edit tab,
shown below, will appear.

4. Unselect the following options: Enable Delete Key, Enable In-Cell Editing,
Enable Cell Text Dialog, and all of the options in the Allow User To box.

5. Click OK.

Chapter 5 Working With Data 81
➤ To use properties and methods to make a workbook read-only:

■ Set all of the following properties to False: ShowEditBar, AllowDelete,
AllowInCellEditing, AllowCellTextDlg, AllowResize, AllowFillRange,
AllowMoveRange, AllowEditHeaders, and AllowFormulas. Data and formula
entry and editing is thus prevented. Any data manipulation must be performed
programmatically.

Denying Access to a Worksheet
To deny access to a worksheet, hide the worksheet tabs. For information on how to
do this in the Workbook Designer and programmatically, see “Displaying Parts of the
Workbook Designer” on page 45.

Denying Access to Certain Cells
To deny access to one, a few, or all of the cells in a worksheet, lock the cells and
enable worksheet protection. Locked cells may be selected, but they cannot be
changed, moved, resized, or deleted. You may protect the entire worksheet or just
certain cells in the worksheet. You can protect the worksheet in the Workbook
Designer or programmatically.

Protecting the worksheet is a two-step process: First you choose which cells you
want to be locked. Then you enable worksheet protection. Locking the cells has no
effect until you enable the protection.

By default, worksheet cells are locked and protection is disabled.

➤ To protect the worksheet in the Workbook Designer:

1. Select the cells you want to lock or unlock.

2. Select Format > Cells and click the Protection tab.

The Protection tab of the Format Cells dialog box appears.

3. Check the Locked check box to lock the selected cells. Uncheck the Locked
check box to unlock the selected cells. Click OK.

4. Select Format > Sheet > Protection. A check by the Protection menu item means
that protection is enabled and locked cells cannot be entered and changed.

➤ To set editing permissions on selected cells programmatically:

1. Select the cells you want to lock and use the GetCellFormat or SetCellFormat
method of the F1Book object to create an F1CellFormat object for the selected
cells.

2. Use the ProtectionLocked property of the F1CellFormat object to lock or unlock
the selected cells. (Note: You can use the ProtectionHidden property of the
F1CellFormat object to hide cells.)

3. Use the EnableProtection property to enable protection.

82 Formula One ActiveX User’s Guide
Note Worksheet cells are locked by default. If you want to protect only selected
cells, you must unlock the rest of the worksheet cells, then enable worksheet
protection.

Working With Locked Cells
By default, in the Workbook Designer, when a user selects a locked cell and tries to
enter data, Formula One will beep and display the message “Locked cells cannot be
modified.” You can turn off the error message so that Formula One just beeps in this
situation. To turn off the error message, uncheck the Show “Locked Cells” Error
Message in the Edit tab of the Format Sheet dialog box. To turn off the error message
programmatically, set the ShowLockedCellsError property to False.

Also in the Workbook Designer, when a locked cell is selected, the ENTER, SHIFT-
ENTER, TAB, and SHIFT-TAB keys advance the selection to the next unlocked cell.

Denying Access to Row and Column Headings
You may keep the user from changing row and column heading text in a worksheet.

➤ To use the Workbook Designer to deny access to row and column headings:

1. Select the worksheet(s) you want to restrict access to headings in.

2. Choose Format > Sheet > Properties and click the Edit tab. The Edit tab, shown
on page 80, will appear.

3. Uncheck the Edit Headings box and click OK.

➤ To use properties to deny access to row and column headings:

■ Set the AllowEditHeaders property to False.

Restricting Cell Data to Certain Values
You can restrict the user to entering only specific values in a cell by specifying a
validation rule for the cell. A validation rule consists of a formula to test, and text to
display if the validation fails. If the formula returns True, the value is entered. If the
formula returns a text string, the string is displayed and the value is not entered. If
the formula returns False, the value is not entered and the validation text is displayed
in an error dialog box.

For example, you can limit the range of values a user can enter in a cell by creating a
rule that fails if the user enters a number under 100 and displays the message “Enter
a value greater than 100.”

You can use relative references in validation rules. These references are considered to
be relative to the active cell. This allows a validation rule to be properly applied to an
entire range.

Chapter 5 Working With Data 83
Note Validation rules are only checked if data is entered manually, or through use of
the Entry or EntryRC property. Any other way of entering data, such as selecting a
value from a check box, bypasses validation.

Note Formula One’s validation rules are incompatible with Microsoft Excel’s
validation rules.

➤ To create a validation rule in the Workbook Designer:

1. Select the cell for which you want to create a validation rule.

2. Select Format > Cells to display the Format Cells dialog box.

3. Select the Validation tab.

4. Enter a validation formula in the Rule text box.

5. Enter text to be displayed if the data fails the validation test in the Text box.

6. Click OK.

This illustration shows the validation rule created for cell A1.

84 Formula One ActiveX User’s Guide
➤ To work with validation rules programmatically:

■ Use the ValidationRule property of the F1CellFormat object to create, edit, or
return the validation rule associated with the specified cell. (You can also use the
ValidationRuleLocal, ValidationRuleRC, and ValidationRuleLocalRC
properties to set or return validation rules.)

■ Use the ValidationText property of the F1CellFormat object to create, edit, or
return the text to be displayed if the validation rule fails.

■ Use the FormatCellsDlg method to display the Format Cells dialog box. For
example, to only display the Validation tab of the Format Cells dialog box, use
the following code:

F1Book1.FormatCellsDlg (64)

■ Use the ValidationFailed event to respond progammatically when data fails. You
can even change the value of the data within the ValidationFailed event and
attempt to re-validate.

All of these properties, methods, and events are documented in detail in the Formula
One Online Documentation.

This illustration shows the message displayed when the data entered in cell A1 fails the validation rule.

Chapter 5 Working With Data 85
The Validation Formula
The validation formula follows basically the same rules as those for defined names
(see “Using Names” on page 76). It must also be a worksheet formula that evaluates
to True or False. Following are a number of examples of validation formulas.

SUM(A6:A7) > A5
AND(A6>1, A6 <100)
IF (A7>1,A7<100,A7>0)
OR(ISLOGICAL (A7), A7=1,A7=0)

Denying Entry of Formulas in a Worksheet
You may prevent users from entering formulas in a worksheet while still allowing
them to enter constant values. You may do this in the Workbook Designer or through
code.

➤ To use the Workbook Designer to deny users the ability to enter formulas:

1. Select the worksheet(s) in which you don’t want users to enter formulas.

2. Choose Format > Sheet > Properties and click the Edit tab. The Edit tab, shown
on page 80, will appear.

3. Uncheck the Enter Formulas box and click OK.

➤ To use properties and methods to deny users the ability to enter formulas:

■ Set the AllowFormulas property to False. Setting this property to False does not
affect the entry and editing of constant values.

Restricting the Use of Certain Keys
You may enable and disable a variety of navigation and data entry keys for particular
worksheets. You may do this in the Workbook Designer and in code.

➤ To use the Workbook Designer to disable the use of certain keys:

1. Select the worksheets to which you want to apply the changes.

2. Select Format > Sheet > Properties and click the Edit tab. The Edit tab, shown on
page 80, will appear.

3. To disable use of the arrow, delete, and/or tab keys, unselect the Enable Arrow
Keys, Enable Delete Key, and/or Enable Tab Key options.

4. To prevent the Cell Text dialog box from appearing when the user presses F2
twice, unselect the Enable Cell Text Dialog option. (The Cell Text dialog allows
the user to enter multi-line data.)

5. To leave the active cell selected when a user presses Enter, unselect the Enter
Moves Down option. To move the active cell down one row when the user presses
Enter, check the enter Moves Down box.

6. Click OK.

86 Formula One ActiveX User’s Guide
➤ To use properties and methods to disable the use of certain keys:

1. Use the following properties: AllowArrows, AllowDelete, AllowTabs,
AllowCellTextDlg, and EnterMovesDown.

Restricting the Use of Certain Mouse Actions
For any of the worksheets in a workbook, you can prevent the user from resizing
cells and headings, from filling a range of cells by dragging with the mouse, and
from moving ranges by dragging. You can prevent these actions using the Workbook
Designer or using code.

➤ To use the Workbook Designer to prevent certain mouse actions:

1. Select the worksheet(s) that you want to deny access to mouse actions to.

2. Select Format > Sheet > Properties and click the Edit tab. The Edit tab, shown on
page 80, will appear.

3. To keep users from changing the size of rows, columns, and row and column
headings, unselect the Resize Rows, Columns, and Headings option.

4. To keep users from filling a range by dragging, unselect the Fill a Range by
Dragging option.

5. To keep users from moving a cell or range by dragging, unselect the Move a
Range by Dragging option.

6. Click OK.

➤ To use properties to prevent certain mouse actions:

■ Use the AllowResize, AllowFillRange, and AllowMoveRange properties.

Chapter 6 Editing Worksheets 87
C H A P T E R 6

Editing Worksheets

Formula One provides a variety of ways to edit data in worksheets.

■ You can copy, move, and paste selections interactively or programmatically.

■ Methods allow you to insert data in and delete data from ranges, rows, and
columns.

■ A selected range of data can be sorted according to keys that you specify.

Copying, Moving, and Pasting Selections
You can copy, move, and paste selections interactively or programmatically.
Selections in a worksheet contain many attributes such as:

■ Formulas. Establish the value in a cell. Formulas are displayed in the formula bar
when the cell is active.

■ Values. What displays in the cell.

■ Formats. How the cells and values are shown, such as red text applied to a
selection.

Note Formula One maintains its own internal clipboard and also supports text on the
Windows clipboard. The internal clipboard is more flexible than the Windows
clipboard. The internal clipboard retains formulas and allows cell references to be
adjusted when cells are pasted. The Windows clipboard only holds text and
formatting; cell references are not maintained by the Windows clipboard.

Using Dragging to Move, Copy, and Paste Selections
If you are moving or copying a selection within the same worksheet, dragging or
dragging-and-dropping are the most simple techniques to use. This section discusses
how to:

■ copy a selection to the right or down using dragging

■ drag-and-drop a selection to copy or move it

88 Formula One ActiveX User’s Guide
Copying a Selection Using Dragging
You can copy a selection to the right or down by dragging the copy handle of a
selection. The copy handle is the small knob in the lower right corner of a selection.
When you copy data using the copy handle, the pointer changes to a small crosshair.
The following illustrations describe how to copy by dragging.

You can also copy a selected range in a worksheet. If an autofill list is defined for the
data in the range, the data is copied using the autofill list, as shown in the following
illustration.

Moving or Copying a Selection Using Drag-and-Drop
The following steps describe how to move or copy a selection using Formula One’s
drag-and-drop. Formula One’s drag-and-drop functionality is different from this type
of functionality in other applications. For information about drag-and-drop in other
applications, refer to “Using Drag-and-Drop with Other Applications” on page 90.

➤ To move or copy a selection using drag-and-drop:

1. Select the cells that contain the data, object, or chart you want to move or copy.

2. Position the pointer on the border of the selection.

The copy handle appears in the
lower right corner of a selection.

In this illustration, the number
in A1 is copied to the cells
below when the copy handle
is dragged downward.

In this illustration, the cells below the
range are filled with the data from the
autofill list when the copy handle is
dragged downward.

The copy handle was dragged to cell A7.

Chapter 6 Editing Worksheets 89
When placed on the selection border, the pointer changes to an arrow, as shown in
the following illustration.

3. When the pointer changes to an arrow,

■ to move the selection, hold down the mouse button and drag-and-drop the
selection to the new location.

■ to copy the selection, hold down the CTRL key and drag-and-drop the
selection to the new location

An outline of the selection moves as you drag the pointer, as shown in the
following illustration.

Tip To place the selection on an area of the worksheet that is not visible, move the
cursor to the edge of the worksheet and scroll to the appropriate location.

4. When the pointer is at the appropriate location, release the mouse button.

The original selection is not moved if you hold down the CTRL key. However, The
original selection is moved to the new location if do not hold down the CTRL key.

Note You can disable the user’s ability to copy data by setting the AllowFillRange
property to False. This disables interactive data copying.

The pointer
appears as an
arrow when
positioned on
a selection
border.

When you drag-
and-drop a
selection border,
the highlighted
area moves to
indicate the
placement of the
selection.

90 Formula One ActiveX User’s Guide
Using Drag-and-Drop with Other Applications
You can easily drag text and Windows metafile pictures onto a Formula One
worksheet from other Windows applications, such as Excel.

Note The drag-and-drop functionality only works with applications that support
Windows CF_TEXT and CF_METAFILEPICT data. The mouse pointer changes to

 to indicate that the data cannot be placed in the selected location. For example, if
you select data and drag it to the Desktop, the pointer indicates that the data cannot
be dropped onto the desktop.

➤ To drag information from another application and drop it into Formula One:

1. Arrange the application windows so that the source and destination documents are
open and visible. You must be able to see the information you want to drag and
the Formula One worksheet you want to place it on.

2. Select the information you want to move or copy.

■ To move the information, point to the selected information, and then hold
down the mouse button. When the pointer appears, drag the pointer to the
new location, and then release the mouse button. The pointer changes to
to indicate a move.

■ To copy the information, hold down the CTRL key, point to the selected
information, and then hold down the mouse button. When the pointer
appears, drag the pointer to the new location, and then release both the
mouse button and the CTRL key. The pointer changes to to indicate a
copy.

➤ To drag a selection from Formula One to another application:

1. Arrange the application windows so that the source and destination documents are
open and visible. You must be able to see the data on the Formula One worksheet.

2. Select the information you want to move or copy.

■ To move the selection, point to it, and then hold down the mouse button.
When the pointer appears, drag the pointer to the new location, and then
release the mouse button. The pointer changes to to indicate a move.

■ To copy the selection, hold down the CTRL key, point to the selection, and
then hold down the mouse button. When the pointer appears, drag the pointer
to the new location, and then release both the mouse button and the CTRL
key. The pointer changes to to indicate a copy.

Chapter 6 Editing Worksheets 91
Using Menu Commands to Move, Copy, and Paste Selections
If you are moving or copying a selection for a longer distance, such as another
workbook, worksheet, or application you might want to use menu commands. Also,
in some instances you might not want to paste all cell attributes to the other location.
Formula One allows you to choose whether to paste formulas, values, or formats.
Furthermore, Formula One allows you to copy formatting from a cell or range and
apply that formatting to another cell or range.

This section describes how to use menu commands to:

■ move, or copy and paste a selection

■ copy formatting of a selection and apply it to a cell or range

■ paste individual attributes of a selection to another location

Formula One also provides toolbar buttons that perform the same functions as the
menu commands.

➤ To move or copy a selection using menu commands:

1. Select the cells that you want to cut.

2. Select Edit > Cut to move a selection. Alternatively, select Edit > Copy to copy a
selection.

3. Select the upper left cell where you want to move or paste the selection and select
Edit > Paste.

This pastes all cell attributes.

➤ To paste individual cell attributes:

1. Select the upper left cell of where you want to paste the selection and select Edit
> Paste Special.

The Paste Special dialog box is displayed as shown in the following illustration:

2. Click OK.

Select the option button for the
attribute that you want to paste.

92 Formula One ActiveX User’s Guide
➤ To copy only the formatting of a selection and apply it to a cell or range:

1. Select the cells that contain the formatting that you want to apply.

2. Select Edit > Copy Cell Format.

3. Highlight the cell or range for which you want to apply the formatting and click
the left mouse button.

The formatting is applied.

Using Methods to Edit, Move, Copy, and Paste Selections
Selections can be edited, moved, copied, or pasted programmatically using the
techniques described in the following sections.

Using Methods to Edit Ranges
Ranges of data can be edited using one of several editing methods. Formula One
automatically adjusts cell references when cells are moved. Thus, the integrity of
worksheet formulas remains intact. The following table describes the methods that
interact with the clipboards.

■ If you cut a cell to which formulas refer, the formula references are maintained
while the cell remains in the clipboard. If the cell is subsequently pasted,
references in the original formulas are adjusted to point to the cell’s new location.

■ If a cell containing a formula is copied and subsequently pasted, its relative
references are adjusted to point to a new location.

Method Operation

ClearClipboard Frees Formula One resources that are on the Windows clipboard.

CopyAll Copies the contents of the active worksheet in the specified view to the
active worksheet in the current view.

EditCopy Copies the current selection to the internal clipboard and the Windows
clipboard (in text format only). If there is more than one selection, only
the first selection is copied.

EditCut Cuts the current selection to the internal clipboard. If there is more than
one selection, only the first selection is cut.

EditPaste Pastes the contents of the internal clipboard to the current selection. If
the internal clipboard is empty, text is pasted from the Windows
clipboard. You can also paste tab-delimited blocks of data.

EditPasteValues Pastes values from the clipboard to the current worksheet selection. Any
formatting applied to the values is ignored. In addition, only formula
results are pasted; formulas are ignored.

EditPasteSpecial Pastes formats, formulas, values, or everything from the clipboard to the
selected range.

Chapter 6 Editing Worksheets 93
Using Methods to Copy Selections Across
Four methods copy selections within and between worksheets. The following table
describes these methods.

Using Methods to Move Data
There are several ways you can move ranges of data. The easiest way is to use the
MoveRange method. When you use this method, the integrity of formula cell
references is maintained.

If there is special processing that must be performed when data is moved, you can
use a loop in C or C++ code to move the data. However, cell references are not
adjusted using this technique.

Using Methods to Copy Data Between Worksheets and
Arrays
Formula One provides two methods for copying data between a worksheet and a
variant array.

■ The CopyDataFromArray method allows you to quickly copy data from an
array to a specified range of cells in a worksheet.

■ The CopyDataToArray method allows you to quickly copy data from a specified
range of cells in a worksheet to a variant array.

Transferring Data via Uniform Data Transfer
In development environments which support Uniform Data Transfer, Formula One
exposes its IDataObject for Uniform Data Transfer support. Data can be transferred
between the ActiveX control and other applications that support UDT in the
CF_TEXT format. When an application requests data from Formula One, the current
selection is sent in tab-delimited format. When CF_TEXT data is sent to Formula
One, it is copied into the worksheet starting at Cell A1 unless the
DataTransferRange property has been set.

Method Operation

EditCopyDown Copies the top row of the selection down. Relative references are
automatically adjusted.

EditCopyRight Copies the left column of the selection right. Relative references are
automatically adjusted.

CopyRange Copies a range from one range to another, within the same workbook or
between workbooks.

CopyRangeEx Copies a range from one worksheet to another, within the same
workbook or between workbooks.

94 Formula One ActiveX User’s Guide
Finding and Replacing Data in Formula One
Formula One allows you to find and replace data within a worksheet in formulas and
values. You may invoke the Find dialog and a separate Replace dialog in the
Workbook Designer or programmatically within the application. You may also find
and replace data in a worksheet using properties and methods.

Whichever way you choose to do the find and replace, Formula One gives you
several search options: You may search by row or by column; you may search for
values or formulas or both; and you may specify search options like matching case.

➤ To find data in a worksheet using the Workbook Designer:

1. Invoke the Workbook Designer by selecting that option on the context menu.

2. Choose Edit > Find or issue the Ctrl F keyboard shortcut. The Find dialog, shown
below, will appear.

3. Enter the data you want Formula One to search for in the Find What dialog box.
Choose any special search options you want, then click the Find Next button.

4. Formula One will select the first cell that contains the search string you chose. If
it finds no instances of the string, it will display the message "Cannot find
matching data."

5. If you want to replace the data, click Replace. The Replace dialog box, shown
below, will appear.

6. Click Close when you finish.

➤ To replace data in a worksheet using the Workbook Designer:

1. Invoke the Workbook Designer by selecting that option on the context menu.

The Find dialog allows you to search for
data in a worksheet by row order or by
column order.

In a Formula One worksheet, you can search for
data in cell Values or Formulas.

Chapter 6 Editing Worksheets 95
2. Choose Edit > Replace or issue the Ctrl H keyboard shortcut. The Replace dialog,
shown below, will appear.

3. Enter the data you want Formula One to search for in the Find What dialog box.
Enter the data you want to replace that data with in the Replace With box. Choose
any special search options you want, then click Find Next.

4. Formula One will select the first cell that contains the search string you chose. If
it finds no instances of the string, it will display the message "Cannot find
matching data."

5. Click Replace if you want to replace the data, or click the Find Next button to
search for the next instance of the search string.

6. Click Close when you finish.

➤ To invoke the Find and Replace dialogs programmatically:

■ Use the FindDlg and the ReplaceDlg methods.

➤ To find and replace data in a worksheet using properties and methods:

Formula One provides an API object, F1FindReplaceInfo, to help you
programmatically search for data in a worksheet.

Use the DefineSearch method to create an F1FindReplaceInfo object. The
DefineSearch method sets up the search area and criteria. You may indicate the
string you wish to find, the range of cells you wish to search within the worksheet,
and any special flags you want to set such as matching case or matching the entire
cell.

The search itself is done by the FindNext method of the F1FindReplaceInfo object.
The FindNext method returns True when it finds a matching string. It also sets the
Row and Col properties for the F1FindReplaceInfo object so that they return the row
and column in which the match was found.

The Replace method of the F1FindReplaceInfo object replaces the search string
found by the FindNext method with the replacement string of your choice.

The Replace dialog provides a text
box for entering the data string you
wish to replace with.

Select Match Case if you want the search to find data with matching
case.

Select Find Entire Cells Only if you want the search to locate cells
containing only the string. Otherwise, Formula One will also locate
cells that contain the search string and other data.

96 Formula One ActiveX User’s Guide
For more information regarding find and replace objects, properties, and methods,
review the sections on the F1FindReplaceInfo object in the Formula One on-line
help.

Inserting Cells, Rows, and Columns
You can insert cells, rows, or columns using the Workbook Designer or
programmatically.

➤ To insert cells using the Workbook Designer:

1. Select a range of cells in the size and place of the new cells that you want to
insert.

2. Select Insert > Cells to display the Insert dialog box.

3. Select an Insert option button to specify a direction that you want the surrounding
rows, columns, or cells to shift.

4. Click OK.

➤ To insert rows using the Workbook Designer:

1. Select the same number of columns directly below where you want to add the
new row or rows.

2. Select Insert > Rows.

➤ To insert columns using the Workbook Designer:

1. Select the same number of columns directly to the right of where you want to add
the new column or columns.

2. Select Insert > Columns.

➤ To insert new cells programmatically:

■ Use the InsertRange method to insert new cells in a worksheet. You supply a
range where new cells are inserted and specify how the current cells in that range
should be shifted to make room for the new cells.

The following example inserts a two by two block of cells starting at B2. The
current cells in the range B2:C3 are shifted downward to make room for the new
cells.

F1Book1.InsertRange 2, 2, 3, 3, F1ShiftVertical

■ Use the EditInsert method to insert cells, rows, and columns. You specify
whether rows, columns, or cells should be inserted. This method call uses the
currently selected range to determine how many rows, columns, or cells to insert.

When new cells are inserted, cell references in formulas are adjusted so the formulas
remain correct.

Chapter 6 Editing Worksheets 97
The next four examples assume the range A4:B5 is selected (a two by two range). In
the following code, data in all columns and rows 4 and below is shifted down two
rows to allow room for the inserted cells.

F1Book1.EditInsert F1ShiftRows

The following code shifts all data in the worksheet right two columns to allow room
for the inserted cells.

F1Book1.EditInsert F1ShiftCols

In the following code, data in all columns of rows 4 and 5 is shifted right two
columns to allow room for the inserted cells

F1Book1.EditInsert F1ShiftHorizontal

In the following code, data in columns A and B in rows 4 and below is shifted down
two rows to allow room for the inserted cells

F1Book1.EditInsert F1ShiftVertical

Clearing and Deleting Cells, Rows, and Columns
You can delete or clear cells, rows, or columns in the Workbook Designer or
programmatically. Deleting cells removes the cells and shifts the surrounding data to
fill the space. Clearing cells leaves the cells but deletes the data.

➤ To delete cells in the Workbook Designer:

1. Select the cells, rows, or columns you want to delete.

2. Select Edit > Delete to display the Delete dialog box.

3. Select a Delete option button to specify a direction you want the surrounding
rows, columns, or cells to shift.

4. Click OK.

➤ To clear cells in the Workbook Designer:

1. Select the cells, rows, or columns you want to clear.

2. Choose one of the following, depending on what you want to clear from the cells:

Select Edit > Clear > Contents to clear only the data and formulas.

Select Edit > Clear > Formats to clear only the cell formats.

Select Edit > Clear > All to clear the content and formats.

3. Click OK.

98 Formula One ActiveX User’s Guide
➤ To delete or clear cells programmatically:

Several methods delete and clear data. The following table lists these methods.

■ EditDelete is similar to the EditInsert method. For EditDelete, you specify
whether cells, rows, or columns should be deleted. The number of cells, rows, or
columns deleted is determined from the current selection. For example, to delete
rows (based on the current selection), you could use the following code:

F1Book1.EditDelete F1ShiftRows

If you delete cells (e.g., using EditDelete or DeleteRange) to which a formula
refers, those formulas return a #REF! error because the referenced cells no longer
exist.

■ To delete a specific range instead of the current selection, use the DeleteRange
method. This method allows you to explicitly specify the range to delete. The
following code uses this method.

F1Book1.DeleteRange 1, 1, 3, 3, F1ShiftRows

Clearing a cell can clear the value or format in a cell, or both. You can also
specify whether or not formulas are cleared. Clearing does not shift other cells in
the worksheet. The cleared cell has a value of zero. Formulas that refer to cleared
cells obtain a value of zero from those cells.

■ You can use EditClear or ClearRange to clear a cell or range of cells. The
following example clears the current selection.

F1Book1.EditClear F1ClearAll

Alternately, you can use the following example to clear specific rows or columns
instead of the current selection.

F1Book1.ClearRange 1, 1, 3, 3, F1ClearAll

Sorting Data in Worksheets
You can sort the data in a worksheet and specify the keys by which the data is sorted.
SortDlg displays a dialog box that allows the user to specify sort keys, sort rows or
columns, and ascending or descending sort order. Before using the sort dialog box, a
range in a worksheet must be selected. The data in the selected range is the data that
is sorted.

You can also sort worksheet data using the Sort or Sort3 methods. Refer to the
Formula One Online Documentation for information about these methods.

Method Operation

EditDelete Deletes the current selection.

DeleteRange Deletes the specified range.

EditClear Clears the current selection.

ClearRange Clears the specified range.

Chapter 7 Formatting Worksheets 99
C H A P T E R 7

Formatting Worksheets

Formula One supports a rich set of data formatting capabilities. You can use number
formats to display numbers in a certain way -- as dates, for example, or as dollars. You
can use cell formats to change the size of cells and to add colors and borders. You can
use font formats to change the typeface and style of the characters in your worksheet.

Using Built-in Number Formats
Number formats determine how numbers look when they appear in the worksheet.
When you create a new worksheet, by default all cells in that worksheet use the General
format, which means that as you enter data in the worksheet, Formula One determines
the type of data and applies the appropriate number format (e.g., if you enter a date, a
date format is applied).

To specify formats other than General, you can apply a number of built-in number
formats using the Workbook Designer. If you do not find the number format you want,
you can create your own custom number format.

➤ To apply number formats using the Workbook Designer:

1. Select the cells for which you want to change the number format.

2. Select Format > Cells and select the Number tab, if necessary.

3. Select a category for the number format from the Category list.

4. Type a number format or select a format type from the Type combo box.

You can type a built-in format or a custom format. Refer to “Creating Custom
Number Formats” on page 102 for more information about custom formats.

5. Click OK.

100 Formula One ActiveX User’s Guide
The following table shows the built-in number formats for a US English locale and the
result after the format is applied to a positive, negative, and decimal number.

Category and Format 3 -3 .3

General 3 -3 .3
Currency

$#,##0_);($#,##0) $3 ($3) $0

$#,##0_);[Red]($#,##0) $3 ($3) in red $0

$#,##0.00_);($#,##0.00) $3.00 ($3.00) $0.30

$#,##0.00_);[Red]$(#,##0.00) $3.00 ($3.00)
in red

$0.30

($* #,##0);($* #,##0);_($* "-"_)
;_(@_) $ 3 ($ 3) $ 0

($* #,##0.00);($* #,##0.00);_($* "-"??_)
;_(@_) $ 3.00 ($ 3.00) $ 0.30
Fixed

0 3 -3 0

0.00 3.00 -3.00 0.30

#,##0 3 -3 0

#,##0.00 3.00 -3.00 0.30

#,##0_);(#,##0) 3 (3) 0

#,##0_);[Red](#,##0) 3 (3) in red 0

#,##0.00_);(#,##0.00) 3.00 (3.00) 0.30

#,##0.00_);[Red](#,##0.00) 3.00 (3.00)
in red

0.30

(* #,##0);(* #,##0);_(* "-"_);_(@_) 3 (3) 0

(* #,##0.00);(* #,##0.00);_(* "-"??_)
;_(@_) 3.00 (3.00) 0.30
Percent

0% 300% -300% 30%

0.00% 300.00% -300.00% 30.00%
Fraction

?/? 3 -3 2/7

??/?? 3 -3 3/10
Scientific

0.00E+00 3.00E+00 -3.00E+00 3.00E-01

##0.0E+0 300.0E-2 -300.0E-2 300.0E-3

Chapter 7 Formatting Worksheets 101
The following table shows the built-in date formats for a US English locale and the
result after the format is applied to a date.

The following table shows the built-in time formats for a US English locale and the
result after the format is applied to a time.

Applying Number Formats to Rows and Columns
If you apply a number format to a row or column, that format is applied to all cells in
the row or column. When you enter data in a cell in a formatted row or column, the data
assumes the designated format.

Formula One allocates memory by rows. Formatting empty rows or columns does not
use memory. A format is merely attached to a row or column. Formatting empty ranges
is treated differently. If you format a range of empty cells, a group of formatted, empty
cells is created. Each new formatted, empty cell consumes memory.

For more information about memory use in Formula One, see chapter 13,
“Performance Tuning and Specifications”.

Obtaining Formatted Text Programmatically
You can obtain the formatted text in a cell by retrieving the value of the
FormattedText, FormattedTextRC, or FormattedTextSRC properties. These
properties return text exactly as it is displayed in the worksheet.

Format 04/18/95

m/d/yy 4/18/95

d-mmm-yy 18-Apr-95

d-mmm 18-Apr

mmm-yy Apr-95

m/d/yy h:mm 4/18/95 0:00

Format 12:02:02

h:mm AM/PM 12:02 PM

h:mm:ss AM/PM 12:02:02 PM

h:mm 12:02 PM

h:mm:ss 12:02:02

m/d/yy h:mm 4/18/95 12:02 PM

mm:ss 02:02

[h]:mm:ss 12:02:02

mm:ss.0 02:02.0

102 Formula One ActiveX User’s Guide
Creating Custom Number Formats
In addition to the built-in number formats, you can define custom formats. Each
custom format can have as many as four sections: one for positive numbers, one for
negative numbers, one for zeros, and one for text. Each section is optional; the sections
are separated by semicolons. The following example shows a custom format.

#,###;(#,###);0;"Error: Entry must be numeric"

➤ To define a custom number format in the Workbook Designer:

1. Select the cells for which you want to create the custom number format.

2. Select Format > Cells and select the Number tab, if necessary.

3. Select a category for the custom number format from the Category list.

4. Type a custom number format built from the custom format characters described
later in this chapter in the Type combo box.

5. Click OK.

➤ To define a custom number format programmatically:

■ Use the NumberFormat property. The following code sets NumberFormat to
format numbers in the current selection with two decimal places and negative
numbers with parentheses.

Dim Fmt As F1CellFormat
Set Fmt = F1Book1.CreateNewCellFormat
Fmt.NumberFormat = “#,##0.00_);(#,##0.00)”
F1Book1.SetCellFormat Fmt

■ Use FormatCellsDlg (F1NumberPage) to display the Format Cells dialog box.
The Number tab of this dialog box allows you to select existing formats as well
as define custom formats. The selected format is applied to all selections. The
following code displays the Format Cells dialog box with the Number tab
displayed.

F1Book1.FormatCellsDlg (F1NumberPage)

Chapter 7 Formatting Worksheets 103
The following table lists the format symbols that can be used in a custom format string.

Format Symbol Description

General Displays the number in General format.

0 Digit placeholder. If the number contains fewer digits than the format
contains placeholders, the number is padded with 0’s. If there are more
digits to the right of the decimal than there are placeholders, the decimal
portion is rounded to the number of places specified by the placeholders.
If there are more digits to the left of the decimal than there are
placeholders, the extra digits are retained.

Digit placeholder. This placeholder functions the same as the 0
placeholder except the number is not padded with 0’s if the number
contains fewer digits than the format contains placeholders.

? Digit placeholder. This placeholder functions the same as the 0
placeholder except that spaces are used to pad the digits.

. (period) Decimal point. Determines how many digits (0’s or #’s) are displayed on
either side of the decimal point. If the format contains only #’s left of the
decimal point, numbers less than 1 begin with a decimal point. If the
format contains 0’s left of the decimal point, numbers less than 1 begin
with a 0 left of the decimal point.

% Displays the number as a percentage. The number is multiplied by 100
and the % character is appended.

, (comma) Thousands separator. If the format contains commas separated by #'s or
0's, the number is displayed with commas separating thousands. A
comma following a placeholder scales the number by a thousand. For
example, the format 0, scales the number by 1000 (e.g., 10,000 would be
displayed as 10).

E- E+ e- e+ Displays the number as scientific notation. If the format contains a
scientific notation symbol to the left of a 0 or # placeholder, the number
is displayed in scientific notation and an E or an e is added. The number
of 0 and # placeholders to the right of the decimal determines the number
of digits in the exponent. E- and e- place a minus sign by negative
exponents. E+ and e+ place a minus sign by negative exponents and a
plus sign by positive exponents.

$ - + / () : space Displays that character. To display a character other than those listed,
precede the character with a back slash (\) or enclose the character in
double quotation marks (" "). You can also use the slash (/) for fraction
formats.

\ Displays the next character. The backslash is not displayed. You can also
display a character or string of characters by surrounding the characters
with double quotation marks (" ").

The backslash is inserted automatically for the following characters:
! ^ & ` (left quote) ' (right quote) ~ { } = < >

* (asterisk) Repeats the next character until the width of the column is filled. You
cannot have more than one asterisk in each format section.

104 Formula One ActiveX User’s Guide
_ (underline) Skips the width of the next character. For example, to make negative
numbers surrounded by parentheses align with positive numbers, you can
include the format _) for positive numbers to skip the width of a
parenthesis.

"text" Displays the text inside the quotation marks.

@ Text placeholder. If there is text in the cell, the text replaces the @ format
character.

m Month number. Displays the month as digits without leading zeros (e.g.,
1-12). Can also represent minutes when used with h or hh formats.

mm Month number. Displays the month as digits with leading zeros (e.g., 01-
12). Can also represent minutes when used with the h or hh formats.

mmm Month abbreviation. Displays the month as an abbreviation (e.g., Jan-
Dec).

mmmm Month name. Displays the month as a full name (e.g., January-
December).

d Day number. Displays the day as digits with no leading zero (e.g., 1-2).

dd Day number. Displays the day as digits with leading zeros (e.g., 01-02).

ddd Day abbreviation. Displays the day as an abbreviation (e.g., Sun-Sat).

dddd Day name. Displays the day as a full name (e.g., Sunday-Saturday).

yy Year number. Displays the year as a two-digit number (e.g., 00-99).

yyyy Year number. Displays the year as a four-digit number (e.g., 1900-2078).

g If you are using a Japanese locale, this displays the Latin letter for an era.

gg If you are using a Japanese locale, this displays the first character of an
era name.

ggg If you are using a Japanese locale, this displays the full era name.

e If you are using a Japanese locale, this displays the full era year.

ee If you are using a Japanese locale, this displays the full era year with a
leading 0 if the year is less than 10.

h Hour number. Displays the hour as a number without leading zeros (e.g.,
0-23). If the format contains one of the AM or PM formats, the hour is
based on a 12-hour clock. Otherwise, it is based on a 24-hour clock.

hh Hour number. Displays the hour as a number with leading zeros (e.g., 00-
23). If the format contains one of the AM or PM formats, the hour is
based on a 12-hour clock. Otherwise, it is based on a 24-hour clock.

m Minute number. Displays the minute as a number without leading zeros
(e.g., 0-59). The m format must appear immediately after the h or hh
symbol. Otherwise, it is interpreted as a month number.

mm Minute number. Displays the minute as a number with leading zeros
(e.g., 00-59). The mm format must appear immediately after the h or hh
symbol. Otherwise, it is interpreted as a month number.

s Second number. Displays the second as a number without leading zeros
(e.g., 0-59).

Format Symbol Description

Chapter 7 Formatting Worksheets 105
The following table shows some examples of custom number formats and numbers
displayed using the custom formats.

ss Second number. Displays the second as a number with leading zeros
(e.g., 00-59).

AM/PM
am/pm
A/P
a/p

12-hour time. Displays time using a 12-hour clock. Displays AM, am, A,
or a for times between midnight and noon; displays PM, pm, P, or p for
times from noon until midnight.

[h] Outputs total number of hours.

[m] Outputs total number of minutes.

[s] Outputs total number of seconds.

s.0, s.00, s.000, ss.0,
ss.00, ss.000

Outputs fractional part of second.

[Black] Displays cell text in black.

[Blue] Displays cell text in blue.

[Cyan] Displays cell text in cyan.

[Green] Displays cell text in green.

[Magenta] Displays cell text in magenta.

[Red] Displays cell text in red.

[White] Displays cell text in white.

[Yellow] Displays cell text in yellow.

[Colorn] Displays cell text using the corresponding color in the color palette. n is
a color in the color palette.

[conditional value] Each format can have as many as four sections: one each for positive
numbers, negative numbers, zeros, and text. Using the conditional value
brackets ([]), you can designate a different condition for each section.
For example, you might want positive numbers displayed in black,
negative numbers in red, and zeros in blue. The following string formats
a number for these conditions:

[>0][Black]General; [<0][Red]General; [Blue]General

Format Cell Data Display

#.## 123.456 123.46

0.2 .2

#.0# 123.456 123.46

123 123.0

#,##0"CR";#,##0"DR";0 1234.567 1,235CR

0 0

-123.45 123DR

#, 10000 10

Format Symbol Description

106 Formula One ActiveX User’s Guide
Formatting Fonts
You may choose from many different fonts, font sizes, font styles, and font colors for
any cells in your workbook.

You can set a default font, font size, and style that will apply to all cells in all
worksheets in the workbook. Later you can change these settings for individual cells.
Changes you make to individual cells will remain, even if you change the default
settings. For more information on changing the default font, see “Setting the Default
Font” on page 46.

Note By default, Formula One uses Arial as the default font. Be sure you always
use a TrueType font as the default font in order for print and display scaling to
work correctly.

"Sales="0.0 123.45 Sales=123.5

-123.45 -Sales=123.5

"X="0.0;"x="-0.0 -12.34 x=-12.3

$* #,##0.00;$* -#,##0.00 1234.567 $ 1,234.57

-12.34 $ -12.34

000-00-0000 123456789 123-45-6789

"Cust. No." 0000 1234 Cust. No. 1234

;;; Anything (Not Displayed)

"The End" 123.45 The End

-123.45 -The End

text text

m-d-yy 2/3/94 2-3-94

mm dd yy 2/3/94 02 03 94

mmm d, yy 2/3/94 Feb 3, 94

mmmm d, yyyy 2/3/94 February 3, 1994

d mmmm yyyy 2/3/94 3 February 1994

hh"h" mm"m" 1:32 AM 01h 32m

h.mm AM/PM 14:56 2.56 PM

hhmm "hours" 3:15 0315 hours

#?/? 1.25 1 1/4

#?/8 1.25 1 2/8

Format Cell Data Display

Chapter 7 Formatting Worksheets 107
➤ To set font formats for individual cells using the Workbook Designer:

1. Select the cells you wish to format.

2. Choose Format > Cells and click the Font tab, shown below.

3. Select the font format settings you want, and click OK.

➤ To set font formats for individual cells programmatically:

■ Use the SetFontEx method.

Aligning Data
Formula One allows you to specify how data is aligned within a cell. The standard
alignment places text along the left edge of the cell and numbers along the right edge
of the cell. Logical and error values are centered.

A text sample with the font,
style, and size you chose
appears here.

Some fonts provide scripts
that allow you to use non-
Western alphabets.
Choose the script you want
here.

108 Formula One ActiveX User’s Guide
➤ To align text in the Workbook Designer:

1. Select the cells for which you want to align the contents.

2. Select Format > Cells and select the Alignment tab, shown below.

3. Specify the horizontal and vertical alignment of data in the selected cells using
the Horizontal and Vertical lists.

4. Select the Wrap Text option to wrap long strings of data to multiple lines within
the cell.

5. Click OK.

➤ To align text programmatically:

■ Use the AlignHorizontal, AlignVertical, and WordWrap properties of the
F1CellFormat object to set horizontal and vertical alignment and word wrapping
for data in the selected cells.

To align the text in the currently selected range(s), you can use the following
code:

F1CellFormat.AlignHorizontal = F1HAlignCenter ‘Centers the text
horizontally

F1CellFormat.AlignVertical = F1VAlignCenter ‘Centers the text
vertically

F1CellFormat.WordWrap = FALSE ‘Disables word wrapping

■ Use FormatCellsDlg with the Alignment tab displayed.

The following code invokes the Format Cells dialog box with the Alignment tab
displayed.

F1Book1.FormatCellsDlg (F1AlignmentPage)

Chapter 7 Formatting Worksheets 109
Merging Cells
You may merge two or more cells in order to create headings that span many columns
or a column entries that span many rows. You can use merged cells to, for example,
create a heading for several different columns of data, or to insert a block of text on a
worksheet. You may merge cells in the Workbook Designer, or you may use properties
and methods.

When you merge cells, Formula One removes the cell borders between the merged
cells and replaces any data in the cells with the data in the top left cell in the selection.
To include all data in the range in the merged cell, copy all the data into the upper-
leftmost cell within the range before merging.

Merged cells function as a single cell on the worksheet, with the row/column reference
of the cell in the top-left corner of the range. For example, if you merge cells A1:B5,
the resulting cell will have the cell reference A1.

➤ To merge cells in the workbook designer:

1. Select the cells you want to merge.

2. Select Format > Cells and select the Alignment tab, shown on page 108.

3. Select the Merge Cells option.

4. Click OK.

➤ To merge cells using properties and methods:

■ Use the MergeCells property of the F1CellFormat object.

Cutting, Copying, and Pasting Merged Cells
Merged cells behave a little differently than normal cells when it comes to cutting,
copying, and pasting. Be aware of the following guidelines when you work with
merged cells.

Pasting the entire merged cell range

Whenever you paste a range that contains merged cells, Formula One requires you to
paste one or more copies of the entire range. It will not paste portions of the range
containing the merged cell(s). This means that you must select a destination range (the
range you are pasting into) that is:

■ equal to the number of rows and columns in the source range, or

■ a multiple of the number of rows and columns in the source range, or

■ a single cell.

110 Formula One ActiveX User’s Guide
For example: A range two rows deep and two columns wide that contains merged cells
can be pasted into a range four rows deep and two columns wide, or two rows deep and
four columns wide. It cannot, however, be pasted into a range two rows deep and three
columns wide.

Paste Special with merged cells

Some of the Paste Special command do not work when the source or destination of the
paste is a range that contains merged cells. Specifically, you cannot use Paste Special
to paste formulas or values to or from a range that contains merged cells.

Changing Row Height and Column Width
You can set the width of columns and the height of rows using menu commands, click
and drag actions, or properties and methods. In addition, Formula One provides
commands that allow you to define the default row height and default column width for
your worksheet. Column and row sizing can be performed in the Workbook Designer
at design time or in a workbook at runtime.

Setting Default Row Height and Width
Formula One provides menu commands that allow you to define the default row height
and default column width for your entire worksheet. This section describes how to
define these default settings.

Allowable ranges to
paste merged cells into

Chapter 7 Formatting Worksheets 111
➤ To define the default row height of a worksheet:

1. Select Format > Row > Default Height to display the Default Row Height dialog
box which is shown in the following illustration.

2. Select the Custom option button define the default height of rows.

3. Enter a custom setting for the row height in the Custom text box.

4. Select whether the custom row height is entered as inches or centimeters from the
Units drop-down list.

5. Click OK.

➤ To define the default column width of a worksheet:

1. Select Format > Column > Default Width to display the Default Column Width
dialog box which is shown in the following illustration.

2. Enter a default width for columns and select a unit from the Units drop-down list.

3. Click OK.

Sizing Rows and Columns Using Menu Commands
You can set the width of selected columns and the height of selected rows using menu
commands. This section describes the commands that allow you to perform these
functions.

For Formula One to automatically adjust the height of rows
based on the values in cells, select the Auto option button.

Select Characters, Centimeters, or Inches for the unit in which the width is entered.

112 Formula One ActiveX User’s Guide
➤ To set the row height of a selection:

1. Select the rows for which you want to set the height.

2. Select Format > Row > Height to display the Row Height dialog box which is
shown in the following illustration.

3. Select the Custom option button define a custom row height for the selected rows.

4. Enter a custom setting for the row height in the Custom text box.

5. Select whether the custom row height is entered as inches or centimeters from the
Units drop-down list.

6. Click OK.

➤ To set the column width of a selection:

1. Select Format > Column > Width to display the Column Width dialog box which
is shown in the following illustration.

2. Enter a custom width for the selected columns and select a unit from the Units
drop-down list.

3. Click OK.

Sizing Rows and Columns Using Click and Drag Actions
When you position the pointer on the right edge of a column heading or the bottom
edge of a row heading, the pointer changes to a double arrow to indicate that the row
or column can be resized. Simply click and drag to resize the column or row.

For Formula One to automatically adjust
the height of rows based on the values in
cells, select the Auto option button.

Click this button to display the Default
Row Height dialog box.

To use the default settings, check this check box.

Select Characters, Centimeters, or Inches for the unit in which the width is entered.

To use the default settings, check this check box.

Chapter 7 Formatting Worksheets 113
If multiple rows are selected when you resize a row, all selected rows are resized as you
drag a row border. Multiple columns can be resized in the same manner.

Double-click the bottom border of a row heading to automatically adjust the height of
all cells in the row to accommodate the largest font size in the row. Double-click the
right side of a column heading to automatically adjust the width of all cells in the
column to accommodate the largest entry. This is shown in the following illustration.

You can also set the size of a selected group of columns or rows to match the size of an
existing row or column. First, select the group of rows or columns you want to resize,
including the row or column whose size you want to match. Then, click the right border
of the column heading or the bottom border of the row whose size you want to match.
The selected rows are resized to match the size of the row or column you clicked.

Note You can disable interactive sizing of rows and columns by setting the
AllowResize property to False.

Sizing Rows and Columns with Properties and Methods
The following table lists the properties and methods that allow you to size rows and
columns.

Property/Method Operation

ColHidden Sets or returns the display status of an individual column.

ColWidth Sets or returns the width of a single column in units of 1/256 of a
average character’s width in the default font or twips (1/1440th of an
inch) depending on the setting of ColWidthUnits.

ColWidthDlg Displays the Column Width dialog box.

ColWidthTwips Sets or returns the width of the specified columns in twips.

When the pointer appears,
double-click this line to
automatically size column A.

Automatically sizing a
column makes the cells wide
enough for the longest text
in the column.

When the pointer appears, double-click this line to automatically size row 1.

Automatically sizing a row makes the cells tall enough for the largest text in the row.

114 Formula One ActiveX User’s Guide
SetRowHeight and SetColWidth set the size of one or more rows or columns. For
example, the following code sets the height of rows 1 through 10 to 1/2 inch, and the
width of columns 1 through 10 (A through J) to 10 characters wide.

F1Book1.SetRowHeight 1, 10, 720, FALSE
F1Book1.SetColWidth 1, 10, 2560, FALSE

SetColWidthAuto and SetRowHeightAuto automatically size rows and columns to
accommodate the largest data in the row or column. For example, the following code
automatically sets the row and column sizes of rows 1 through 10, and columns 1
through 10 (A through J).

F1Book1.SetRowHeightAuto 1, 1, 10, 10, TRUE
F1Book1.SetColWidthAuto 1, 1, 10, 10, TRUE

ColWidthUnits Sets or returns whether column widths are stored and displayed in
twips or character units.

SetColWidth Sets the width of the specified columns in units of 1/256 of an
average character’s width in the default font or twips (1/1440th of an
inch) depending on the setting of ColWidthUnits.

SetColWidthAuto Automatically sets the width of the specified columns to
accommodate the largest data in the column.

SetColWidthTwips Changes the width of one or more columns to the specified number of
twips.

RowHeight Sets or returns the height of a single row in twips.

RowHidden Sets or returns the display status of an individual row.

SetRowHeight Sets the height of the specified rows in twips (one twip equals 1/1440
inch).

SetRowHeightAuto Automatically sets the height of the specified rows to accommodate
the tallest data in the row.

RowHeightDlg Displays the Row Height dialog box.

Property/Method Operation

Chapter 7 Formatting Worksheets 115
Freezing Horizontal and Vertical Panes
To scroll through your worksheet and see designated headings for columns or rows,
split the worksheet into panes by “freezing” them. The following illustration shows a
worksheet with frozen panes.

Data contained in frozen panes cannot be edited. You must perform any data editing in
these panes prior to freezing. If you attempt to select a cell in a frozen row or column,
the entire row or column is selected, just as if you selected a row or column heading.
This is shown in the following illustration.

➤ To freeze horizontal panes in the Workbook Designer:

1. Select a cell in the row below where you want to split the panes.

2. Select Format > Freeze Panes.

The rows above the split are frozen.

Columns A and B are frozen
in this worksheet. When
horizontal scrolling is
performed, columns A and B
do not scroll.

Before horizontal scrolling

After horizontal scrolling

Data in frozen rows and
columns cannot be edited.

When you attempt to select a
cell in a frozen row or
column, the entire row or
column is selected.

116 Formula One ActiveX User’s Guide
➤ To freeze vertical panes in the Workbook Designer:

1. Select a cell in the column to the right of where you want to split the panes.

2. Select Format > Freeze Panes.

The columns to the left of the split are frozen.

➤ To freeze panes using the Format Sheet dialog box in the Workbook Designer:

1. Select Format > Sheet > Properties and select the View tab.

2. Enter a range for the cells that you want to freeze in the Fixed Rows and Fixed
Columns text boxes.

For example, to freeze columns A - B and rows 1- 4 enter $1:$4 in the Fixed
Rows text box and $A:$B in the Fixed Columns text box.

3. Click OK.

➤ To freeze rows or columns programmatically:

■ Setting the FixedRow and FixedCol properties specify the starting row and
column to freeze. The FixedRows and FixedCols properties determine how many
rows or columns are frozen from the first row or column. The following example
freezes A1:A4.

F1Book1.FixedRow = 1
F1Book1.FixedCol = 1
F1Book1.FixedCols = 1
F1Book1.FixedRows = 4

Setting Cell Border and Fill Formats
Cells and ranges can be formatted with borders of different outlines, line styles, and
colors. In addition, cells and ranges can be formatted with colors and patterns. The
following sections describe how to apply these attributes to cells.

Setting Cell Borders
Borders can be applied to the top, bottom, left, and right sides of a cell. When you add
a border to a range, you can place a border around the outside of the range. You can set
borders using the Workbook Designer or programmatically using properties and
methods. To programmatically set formatting for cell borders, use the F1CellFormat
API object.

Chapter 7 Formatting Worksheets 117
➤ To format cells with borders using the Workbook Designer:

1. Select the cells you want to format.

2. Select Format > Cells and select the Border tab from the Format Cells dialog box.
The following illustration shows an example of the Border tab.

Note You must select line style and color before selecting the location of the borders.

3. Select borders using the instructions in the previous illustration.

4. Click OK.

➤ To format cell borders programmatically:

■ Use the F1CellFormat API object, BorderColor and BorderStyle properties,
CreateNewCellFormat method, and the SetCellFormat method to create border
styles for a cell or range.

The following example selects a range and places a thick light green border around the
range.

Dim cellfrmt As F1CellFormat
Set cellfrmt = F1Book6.CreateNewCellFormat

’thick border around the selection
 cellfrmt.BorderStyle(F1RightBorder) = F1BorderThick
 cellfrmt.BorderStyle(F1LeftBorder) = F1BorderThick
 cellfrmt.BorderStyle(F1TopBorder) = F1BorderThick
 cellfrmt.BorderStyle(F1BottomBorder) = F1BorderThick
’green border around the selection

Click directly on
any of the areas in
this box to toggle
the display of
borders.

Click the buttons to
specify on which sides
of the cell or range the
borders should
appear.

Click a Line Style
button to determine a
line style for borders.

Click Automatic to
assign the default
color.

These inside border buttons apply lines to any vertical or horizontal internal
borders in the selected range. Inside borders are not available when only a
single cell is selected.

Click a color to
determine the color of
the borders.

118 Formula One ActiveX User’s Guide
 cellfrmt.BorderColor(F1RightBorder) = QBColor(10)
 cellfrmt.BorderColor(F1LeftBorder) = QBColor(10)
 cellfrmt.BorderColor(F1TopBorder) = QBColor(10)
 cellfrmt.BorderColor(F1BottomBorder) = QBColor(10)

F1Book6.SetSelection 1, 1, 3, 3
F1Book6.SetCellFormat cellfrmt

■ Use FormatCellsDlg to invoke the Format Cells dialog box. The following code
displays this dialog box with the Border tab displayed:

F1Book1.FormatCellsDlg (F1BorderPage)

Setting Cell Fill Colors and Patterns
When you apply colors and patterns to a cell or range, you specify the pattern and
foreground and background colors used to fill the cells. These attributes can be set
using the Workbook Designer or via code using properties and methods.

➤ To format cells with colors and patterns using the Workbook Designer:

1. Select the cells you want to format.

2. Select Format > Cells and select the Patterns tab from the Format Cells dialog
box. The following illustration shows an example of the Patterns tab.

3. Click a fill color in the Fill Color palette to select it.

4. Click a pattern color in the Pattern Color palette to select it.

5. Click a pattern style in the Fill Pattern palette to select it.

6. Click OK.

➤ To format cells with colors and patterns programmatically:

■ Use PatternBG, PatternFG, and PatternStyle properties of the F1CellFormat
object to choose the background and foreground colors and pattern style for the
selected cells.

Click Automatic to return to the
default fill color and pattern color.

Click None to remove any fill
pattern.

A sample of the formatting is
displayed in this area.

Chapter 7 Formatting Worksheets 119
■ Use FormatCellsDlg to invoke the Format Cells dialog box. The following code
displays this dialog box with the Patterns tab displayed:

F1Book1.FormatCellsDlg (F1PatternsPage)

Formatting Row and Column Headings
In addition to formatting worksheet cells, many aspects of row and column headings
can be formatted. Worksheet headings contain three areas: the row headings, column
headings, and the box in the top left corner of the worksheet where the row and column
headings intersect. The following illustration highlights these three areas.

Selecting Row and Column Heading Areas
Row and column headings can be selected interactively or programmatically.

➤ To select headings interactively:

■ Press CTRL+Shift and click the heading area.

➤ To select a heading area programmatically:

■ Use SetHdrSelection. The following code selects the column heading area.

F1Book1.SetHdrSelection FALSE, FALSE, TRUE

■ Set the SelHdrRow, SelHdrCol, and SelHdrTopLeft properties to true. The
following code selects the top left gray rectangle in the worksheet where the rows
and columns intersect.

F1Book1.SelHdrTopLeft = TRUE

After a heading area is selected, you can set:

■ the alignment of the heading text

Column
headings

Row headings

Top left corner

120 Formula One ActiveX User’s Guide
■ the font and color of the heading text

■ the pattern and fill color of the heading area

■ the border used to frame heading cells

Sizing Row and Column Headings
The size of row, column, and top left headings can be set interactively and
programmatically. The following illustration shows interactive resizing of the column
headings.

➤ To interactively change the size of column headings:

■ Click and drag the bottom edge of the top left corner.

➤ To interactively change the size of row headings:

■ Click and drag the right edge of the top left corner.

➤ To change the size of column headings programmatically:

■ Use HdrHeight.

➤ To change the size of row headings programmatically:

■ Use HdrWidth.

Setting Row and Column Heading Text
Like other column and row heading attributes, the text displayed in heading cells can
be changed interactively or programmatically.

➤ To interactively change the text for a row or column heading:

1. Double-click the heading for which you want to enter text to display the Header
Name dialog box.

When the pointer is placed
on an edge of the top left
corner, it appears as a
double arrow.

A guide follows the pointer as you
click and drag the heading border.
The guide indicates the placement
of the heading border when you

When you resize column
headings, you also set the
height of the top left corner.
Likewise, when you resize
row headings, you set the
width of the top left corner.

Chapter 7 Formatting Worksheets 121
2. Enter one or more lines of text to serve as the heading name.

3. Click OK.

The heading text is displayed, as shown in the following illustration

You can control interactive editing of headings by setting the AllowEditHeaders
property. You can return the value of AllowEditHeaders to determine whether
interactively editing headings is allowed.

➤ To set or return the text displayed in column headings programmatically:

■ Use ColText. Use RowText to set or return the text displayed in row headings.
TopLeftText sets or returns the text displayed in the top left corner.

With ColText and RowText, you must specify the column or row for which you
are setting heading text. The following example sets the heading for column 4 to
“Orders” instead of the default “C”.

F1Book1.ColText (3) = "Orders"

The following illustration shows the result of the example code.

Note Rows, columns, and cells retain their default numbers and letters in functions,
properties, and formulas even if the heading text for rows and columns is changed.
For example, the cell at the intersection of column B and row 2 is still referred to as
B2 even if the heading text for row 2 has been set to “New Sales.”

When you double-click a heading, the
Header Name dialog box is displayed.
Enter the heading text you want
displayed in the dialog box.

The new text is displayed in the row heading.
The row heading area has been resized to
display the new heading text.

When entering text in the Header Name
dialog box, you can enter multi-line
headings. Press RETURN to enter a line
feed and start a new line.

The heading text for column C
is replaced with "Orders" by
the ColText property.

Tidestone

Chapter 8 Working With Graphical Objects 123
C H A P T E R 8

Working With Graphical Objects

Formula One provides the ability to create graphical objects in a worksheet. Among
the graphical objects you can create are lines, rectangles, ovals, arcs, polygons,
buttons, check boxes, dropdown list boxes, and charts. As with other worksheet
elements, Formula One provides a wide range of options for formatting and
manipulating the appearance of graphical objects you create.

For specific information about creating and formatting charts, refer to “Working
With Chart Objects” in this manual.

Note Formula One’s graphical objects are incompatible with graphical objects in
Microsoft Excel 95 and 97. You may still read and write Excel worksheets, but any
graphical objects on those worksheets will not be transferred with the file. If you read
or write an Excel file and save the file, any graphical objects that appeared in the
original file will be lost.

Creating Graphical Objects
Formula One provides several methods for creating graphical objects in worksheets:

■ Graphical objects can be created by calling methods in your code.

■ The Workbook Designer allows graphical objects to be created interactively.

■ You can set the mode of the mouse to allow graphical objects to be created at any
time.

The following sections describe each of these methods for creating graphical objects.

Creating Graphical Objects with Methods
Formula One provides several methods that allow you to create graphical objects
from your application code.

■ Use ObjNew or ObjCreate to create lines, rectangles, ovals, arcs, buttons, check
boxes, dropdown list boxes, and charts.

124 Formula One ActiveX User’s Guide
■ Use OjbNewPicture or OjbCreatePicture to create a new metafile picture object
on a worksheet.

The following example creates four adjoining arcs using the ObjCreate method:

Dim pid As Long
pid = F1Book1.ObjCreate(F1ObjArc, 0.5, 2, 1.5, 4)
pid = F1Book1.ObjCreate(F1ObjArc, 2.5, 2, 1.5, 4)
pid = F1Book1.ObjCreate(F1ObjArc, 2.5, 6, 3.5, 4)
pid = F1Book1.ObjCreate(F1ObjArc, 4.5, 6, 3.5, 4)

The following example creates four adjoining arcs using the ObjNew method:

Dim objID1 As Long
Dim objID2 As Long
Dim objID3 As Long
Dim objID4 As Long
F1Book1.ObjNew F1ObjArc, .5, 2, 1.5, 4, objID1
F1Book1.ObjNew F1ObjArc, 2.5, 2, 1.5, 4, objID2
F1Book1.ObjNew F1ObjArc, 2.5, 6, 3.5, 4, objID3
F1Book1.ObjNew F1ObjArc, 4.5, 6, 3.5, 4, objID4

The following illustration shows the result of the example code.

Interactively Drawing Graphical Objects
The Workbook Designer toolbar contains tools that allow you to interactively create
and edit graphical objects. The following table describes the tools.

Button Name Description

Polygon point editing
tool

Toggles between normal polygon editing and polygon
point editing. When polygon point editing is enabled,
use this tool to move the points of a polygon.

Line tool Draws lines.

Rectangle tool Draws rectangles and squares.

Oval tool Draws ovals and circles.

Chapter 8 Working With Graphical Objects 125
Interactively drawing graphical objects in the Workbook Designer is as simple as
point, click, and drag.

➤ To create a graphical object in the Workbook Designer:

1. Click the tool for the graphical object you want to create.

The pointer appears as a small cross when positioned in the worksheet.

2. Position the pointer at the point where you want to begin drawing.

3. Click and drag to create the graphical object.

An outline of the graphical object you are creating appears and moves as you drag
the mouse.

4. Release the mouse button to set the graphical object in place.

Note When creating a graphical object, press ALT to align the graphical object to the
cell grid.

Picture Objects
You can place a picture object on a worksheet and fill it with a metafile. Formula One
provides two methods for doing this: one for drawing the picture object, and one for
filling it with a metafile.

Arc tool Draws arcs.

Polygon tool Draws polygons.

Button tool Draws buttons.

Check box tool Draws check boxes.

Dropdown list box tool Draws dropdown list boxes.

Chart tool

If Tidestone’s First Impression charting software is
installed on your computer, this button accesses First
Impression to create a chart based on the selected
range of data.

Button Name Description

126 Formula One ActiveX User’s Guide
■ Use ObjNewPicture or ObjCreatePicture to create a picture object on the
current worksheet. You must specify the position for the new picture object.

When specifying the location of the picture object, integers place the edge of the
picture object on a row or column border; fractional numbers place the edge of
the picture object between borders.

■ Use ObjSetPicture to place a metafile in an existing graphical object. You must
provide a handle to the metafile and the ID number of the picture object into
which you want the metafile placed. Any metafile previously contained by the
picture object is freed from memory.

These methods also pass information about the dimensions of the picture and
whether the picture can be stretched. Formula One manages the memory associated
with a metafile once a picture object has been created, including freeing memory
when the graphical object is deleted.

You should be familiar with Windows metafiles and their structure before using these
methods.

Setting Mouse Mode
By setting the mode for mouse actions, you can allow graphical objects to be drawn
interactively in a worksheet.

■ Set the Mode property to change the mouse mode. You can specify that the
mouse draw charts, lines, rectangles, ovals, arcs, buttons, polygons, check boxes,
and dropdown list boxes. You can also specify that the mouse assume normal
worksheet editing mode.

■ Return the value of the Mode property to return the current mouse mode.

The following example uses Mode to set the mouse mode to rectangle drawing when
you double-click a worksheet.

Private Sub F1Book1_DblClick(ByVal nRow As Long, ByVal nCol As Long)
F1Book1.Mode = F1ModeRectangle

End Sub

Identifying Graphical Objects
When you create a graphical object – whether by method, in the Workbook Designer,
or by setting the mouse mode – the graphical object is assigned an identification
number. Many methods or properties require a graphical object identification number
to tell Formula One on which graphical object to operate.

If you are uncertain of a graphical object’s identification number, there are several
ways to determine it.

Chapter 8 Working With Graphical Objects 127
➤ To determine a graphical object’s number in the Workbook Designer:

1. Select the graphical object for which you want to determine the identification
number.

2. Select Format > Object to display the Format Object dialog box.

3. Select the Name tab. The Name tab displays the identification number of the
selected graphical object, as shown in the following illustration.

4. Click OK.

➤ To determine a graphical object’s number programmatically, use one of the
following properties or methods:

■ If a graphical object is selected, the ObjGetSelection method returns the
identification number of the selected object.

■ Formula One maintains a list of graphical objects in each worksheet within a
workbook. The order of the graphical objects in that list is determined by the
order in which graphical objects are drawn in the worksheet. The farther to the
back a graphical object is placed or drawn, the higher the graphical object is
placed in the list; the closer to the front a graphical object is placed or drawn, the
lower the graphical object is placed in the list. Therefore, when you call
ObjFirstID, this method returns the identification number of the first graphical
object in the list, which is the graphical object created farthest back in the layers
of worksheet graphical objects. Then, ObjNextID returns the identification
number of the next closest graphical object, and so on.

Note When you use the ObjBringToFront and ObjSendToBack methods or the
Bring To Front and Send To Back commands from the Format menu in the
Workbook Designer, you alter the order of the graphical object list maintained by the
worksheet.

■ If an graphical object has been named, you can return the identification number of
the named graphical object with the ObjNameToID method.

The Name tab displays
the identification
number for the selected
graphical object.

128 Formula One ActiveX User’s Guide
Naming Graphical Objects
As mentioned in the previous section, graphical objects can be named after they are
created. Graphical object names do not take the place of graphical object
identification numbers. Rather, graphical object names are used as a supplement to
identification numbers, making it easier to track and manipulate graphical objects.

Another purpose for naming graphical objects is to enable the ObjClick,
ObjDblClick, ObjGotFocus, ObjLostFocus, and ObjValueChanged events.
Before these events can fire, you must name the graphical object receiving the action.

Graphical objects can be named in the Workbook Designer or programmatically.

➤ To name a graphical object in the Worksheet Designer:

1. Select the graphical object you want to name.

2. Select Format > Object to display the Format Object dialog box.

3. Click the Name tab.

4. Enter the name to assign to the graphical object in the Name for Object text box.

➤ To name a graphical object programmatically:

■ Set the ObjName property to name a graphical object. Once a graphical object is
named, return the value of ObjName to obtain the name assigned to a graphical
object. You can also call FormatObjectDlg (F1NamePage) to display the Format
Object dialog box with the Name tab displayed.

Note After a graphical object is named, you must press CTRL to select it at runtime.
In addition, if the ObjClick or ObjDblClick events are enabled, you must press
CTRL when clicking the graphical object.

Selecting Graphical Objects
When working in the Workbook Designer or in a workbook at runtime, selecting
graphical objects is an important first step when you are formatting, moving, or
resizing graphical objects. In addition, many properties and methods – such as
SetPattern, SetLineStyle, ObjPatternStyle, ObjPatternFG, ObjPatternBG,
ObjBringToFront, and ObjSendToBack – require that a graphical object be
selected for the property or method to work.

Chapter 8 Working With Graphical Objects 129
Interactively Selecting Graphical Objects
Selecting graphical objects interactively in the Workbook Designer or in a worksheet
at runtime is as simple as pointing and clicking.

➤ To interactively select a graphical object:

1. Position the pointer on the graphical object you want to select.

The pointer appears as an arrow when positioned on a graphical object.

2. Click the graphical object.

When the graphical object is selected, selection handles appear at the edges of the
bounding box that surrounds the graphical object.

Note For check boxes, dropdown list boxes, and buttons that have been named or if
the ObjClick or ObjDblClick events are enabled, you must press CTRL when
selecting the graphical object. In addition, in a worksheet at runtime, you must press
CTRL to select arcs, lines, ovals, polygons, and rectangles that have been named.

To select multiple graphical objects, press SHIFT as you select the graphical objects.
For graphical objects that have been named, you must press CTRL+SHIFT to select
multiple graphical objects.

In the Workbook Designer, you can choose Edit > Select All Objects to select all the
graphical objects in an active worksheet.

Limiting Interactive Graphical Object Selection
Setting the AllowObjSelections property allows you to specify whether users can
interactively select graphical objects in the Workbook Designer or in a worksheet at
runtime. Return the value of AllowObjSelections to determine if graphical object
selections are allowed.

Selecting Graphical Objects Programmatically

➤ To select graphical objects programatically, use one or more of the following:

■ ObjSetSelection selects the graphical object you specify by graphical object
identification number. This method unselects any previously selected graphical
objects or worksheet ranges.

■ ObjGetSelection returns the identification number of the selected object. If more
than one object is selected, you must indicate for which object to return an
identification number.

■ ObjAddSelection selects the specified graphical object; all previously selected
objects remain selected.

130 Formula One ActiveX User’s Guide
■ ObjSelection returns the identification number of the selected graphical object. If
more than one graphical object is selected, you must indicate for which graphical
object to return an identification number.

■ ObjGetSelectionCount returns the number of graphical objects currently
selected.

Moving, Sizing, and Arranging Graphical Objects
After a graphical object is created, you can change both the position and size of the
graphical object. Formula One allows these changes to be made interactively or
programmatically.

Interactively Moving and Sizing Graphical Objects
Interactively, graphical objects can be moved and resized at runtime or in the
Workbook Designer.

➤ To interactively move and size a graphical object:

1. Select the graphical object to be moved or sized.

Note To select a named button, check box, or dropdown list box, you must press
CTRL when selecting the graphical object. Or, if the ObjClick or ObjDblClick
events are enabled, you must press CTRL when clicking the graphical object.

When you select a graphical object, selection handles appear along the bounding
box that surrounds the graphical object.

2. If moving the graphical object, position the pointer anywhere in the area occupied
by the graphical object. If resizing the graphical object, position the pointer on
one of the selection handles.

When positioned in the graphical object area, the pointer appears as an arrow.
When positioned on a selection handle, the pointer appears as a two-headed
arrow, indicating the direction in which the graphical object can be resized.

3. Click and drag to move or resize the graphical object.

An outline of the graphical object moves with the pointer as you drag the mouse.

Note When moving or resizing a graphical object, you can align it to the worksheet
grid by pressing ALT as you click and drag.

4. Release the mouse to set the graphical object at its new position or at its new size.

Chapter 8 Working With Graphical Objects 131
Positioning Graphical Objects Programmatically
Use the ObjSetPos method to set the position of a graphical object. Because the
EndCol, EndRow, StartCol, and StartRow properties of the F1ObjPos API object
and the ObjSetPos method set the placement of both anchor points of the bounding
box that surrounds a graphical object, the graphical objects are also resized.

If you are uncertain of an object’s location, use the F1ObjPos API object or the
ObjGetPos method to return the position of a graphical object. The following
examples use ObjGetPos and F1ObjPos to obtain the position of the object. Then,
ObjSetPos resizes the object by moving the second anchor point left one and a half
columns and up five rows.

ObjGetPos and ObjSetPos Example:
Dim x1 As Single
Dim y1 As Single
Dim x2 As Single
Dim y2 As Single

F1Book1.ObjGetPos 1, x1, y1, x2, y2
F1Book1.ObjSetPos 1, x1, y1, (x2 - 1.5), (y2 - 5)

F1ObjPos and ObjSetPos Example:

Dim id As Long
Dim F1ObjPos As Single
Dim position As F1ObjPos
id = F1Book1.ObjFirstID
Set position = F1Book1.ObjGetPosEx(id)
F1Book1.Text = position.startcol
F1Book1.Text = position.startrow
F1Book1.Text = position.endcol
F1Book1.Text = position.endrow
F1Book1.Text = position.Cols
F1Book1.Text = position.Rows
F1Book1.ObjSetPos id, position.startcol, position.startrow,

(position.endcol - 1.5), (position.endrow - 5)

132 Formula One ActiveX User’s Guide
The following illustration shows the results of these examples.

You can also use the ObjPosShown method to return the graphical object’s display
status.

Determining Graphical Object Position and Size
The ObjPosToTwipsEx and ObjPosToTwips methods return the placement and size
of a graphical object in twips. For these methods, you provide the position of a
graphical object’s anchor points in relation to the rows and columns of a worksheet.
They also determine whether the graphical object is shown, partially shown, or
hidden given the current dimensions of the view.

These methods do not reference a specific graphical object on a worksheet and have
no effect on any graphical objects.

Arranging Overlapping Graphical Objects
When you have multiple graphical objects on a worksheet, they appear to be drawn
on the same plane. However, when two graphical objects overlap, the previously
drawn object is covered by the latter-drawn object. You can change the order of
graphical object layering in a worksheet by sending a graphical object behind other
graphical objects or bringing a graphical object to the front of other graphical
objects.

➤ To arrange graphical objects in the Workbook Designer:

1. Select the graphical object you want to move.

2. Select Format > Bring to Front or Format > Send to Back to move the graphical
object to the direction you specify.

➤ To arrange graphical objects programmatically:

■ Call the methods ObjBringToFront or ObjSendToBack to arrange graphical
objects. These methods move only the selected graphical objects.

The first anchor point of the
oval remains stationary.

Only the second anchor point is
repositioned. Thus, the oval is resized.

Chapter 8 Working With Graphical Objects 133
If multiple graphical objects are selected when using these commands and methods,
the order of graphical objects within the selection remains unchanged. The selected
graphical objects are placed in front of or behind only the unselected graphical
objects.

Arranging Graphical Object Order
When you use the ObjBringToFront and ObjSendToBack methods or the Format >
Bring To Front and Format > Send To Back commands in the Workbook Designer,
you alter the order of the graphical object list maintained by the worksheet.

Refer to “Identifying Graphical Objects” on page 126 for information about how this
affects the identification of graphical objects.

Formatting Graphical Objects
Many elements of graphical objects can be formatted including:

■ fill patterns and colors; line colors; and widths and styles for arcs, lines, ovals,
polygons, and rectangles

■ the lists of items contained by dropdown list boxes

■ the text displayed by check boxes or buttons

Formatting Colors and Patterns
To set the fill colors and patterns for graphical objects – arcs, ovals, polygons, and
rectangles – use the following methods:

➤ To set fill colors and patterns for selected graphical objects in the Workbook
Designer:

1. Select the graphical object.

2. Select Format > Object to display the Format Object dialog box.

3. Select the Patterns tab.

4. Click a fill color in the Fill Color palette. This assigns a background color to the
graphical object.

5. If you want to assign a pattern to the object, click a pattern style in the Fill Pattern
palette, then click a pattern color in the Pattern Color palette. The pattern color
will be the foreground color in the pattern.

6. Click OK.

➤ To set fill colors and patterns for selected graphical object programmatically:

■ Use SetPattern to set the fill colors and pattern for the selected objects.

■ Use ObjPatternStyle, ObjPatternBG, and ObjPatternFG to set the fill colors
and pattern for the selected graphical objects.

134 Formula One ActiveX User’s Guide
■ Call the FormatObjectDlg (F1PatternsPage) to display the Format Object dialog
box with the Patterns tab displayed.

Formatting Lines (Borders) on Graphical Objects
To set the line style, color, and weight for line graphical objects and the lines that
form the borders of arcs, ovals, polygons, and rectangles, use the following
approaches.

➤ To format lines for selected graphical objects in the Workbook Designer:

1. Select the graphical object.

2. Select Format > Object to display the Format Object dialog box.

3. Select the Line Style tab.

4. Click a line style or click None to not specify a line style. Line styles can be
applied to line objects and the borders of arcs, ovals, polygons, and rectangles.
The line styles are shown in the following illustration:

5. Click a line weight. Solid lines can be 1/2 point, 1 point, 2 points, or 3 points in
weight. Styled lines can be 1/2 point in weight. The line weights are shown in the
following illustration:

6. Click a color in the Color palette. This assigns a color to the line.

7. Click OK.

None

Dashed

Solid

Dash-dit-ditted

Dash-ditted

Ditted

1/2 point (displayed as 1 point rule on low resolution monitors).

2 points

1 point

3 points

Chapter 8 Working With Graphical Objects 135
➤ To format lines for selected graphical objects programmatically:

■ Use SetLineStyle to set the line style, color, and weight for the selected objects.

■ Use the LineStyle, LineColor, and LineWeight properties to set the line style,
color, and weight for the selected graphical objects.

■ Call FormatObjectDlg (F1LineStylePage) to display the Format Object dialog
box with the Line Style tab displayed.

Showing and Hiding Graphical Objects
A graphical object on a worksheet can be hidden by setting the ObjVisible property
to False. To display a hidden graphical object, set the property to True. If you are
uncertain whether a graphical object is shown or hidden, return the value of
ObjVisible.

Formatting Dropdown List Boxes
Dropdown list boxes can be formatted by setting or changing the cell they reference,
whether a selection appears in the referenced cell as a value or text, and specifying
the list of selections in the dropdown list box.

➤ To set or edit dropdown list box items in the Workbook Designer:

1. Create a dropdown list box, or select an existing one. When you draw the
dropdown list box, draw an area wide enough to display the longest item in the
list and as tall as the list of items you want to display. Formula One automatically
sets the height of the list box; you set the height of the dropdown list of items.

2. Select Format > Object to display the Format Object dialog box.

3. Select the Options tab. The following illustration shows an example of the
Options tab.

Enter or edit the list of items contained by the dropdown list
box. The items must be entered as a semicolon-delimited list.

If you want the results of a selection to be displayed in a cell,
type the cell location in the Cell text box.

Check the Assign As Text check box to assign the dropdown list box items as text, rather than values.

136 Formula One ActiveX User’s Guide
4. Click OK. The following illustration shows the results.

➤ To set and manipulate the items contained in a dropdown list box
programmatically, use the following properties:

■ Set ObjItems to specify a list of items for a dropdown list box. For this property,
you provide a semicolon-delimited list of items. The list you provide replaces any
previously specified lists. Return the value of ObjItems to get a semicolon-
delimited list of items from a list box.

■ To change an item in a list of items, set ObjItem. For this property, you provide
the number of the item you want to change and the new value for the item. Return
the value of ObjItem to get a specific item from a dropdown list box.

■ To add an item to a list of items, use ObjAddItem. This method adds an item to
the end of the current list. Use ObjInsertItem to add an item at a specific
location within a list.

■ Use ObjDeleteItem to delete an item from a dropdown list box.

■ ObjGetItemCount returns the number of items contained by a dropdown list
box.

■ Use FormatObjectDlg (F1OptionsPage) to display the Format Object dialog box
with the Options tab displayed.

Formatting Check Boxes
The text displayed by a check box can be set either through the Workbook Designer
or programmatically.

➤ To edit check box text in the Workbook Designer:

1. Select a check box.

2. Select Format > Object to display the Format Object dialog box.

3. Select the Options tab.

4. Edit the text displayed by the check box.

5. Click OK.

When you select Marketing, the text for
Marketing is displayed in the cell.

Chapter 8 Working With Graphical Objects 137
➤ To set the text displayed in a check box programmatically:

■ Set the ObjText property. Return the value of ObjText to get the text displayed
by a check box.

Formatting Buttons
The text displayed on a button can be set either through the Workbook Designer or
programmatically.

➤ To edit button text in the Workbook Designer:

1. Select a button.

2. Select Format > Object to display the Format Object dialog box.

3. Select the Options tab.

4. Edit the text displayed on the button.

5. Click OK.

➤ To set the text displayed on a button programmatically:

■ Set the ObjText property. Return the value of ObjText to get the text displayed
on a button.

Selecting Check Box and Dropdown List Box Items
Formula One provides a variety of methods for checking or unchecking check box
objects and selecting items from dropdown list box objects.

■ At runtime, items can be checked or selected interactively using the mouse.

■ Properties and methods can set the value of a check box or dropdown list box
object.

■ By assigning a cell to a graphical object, you can set the value in the cell by
making a selection from the graphical object. Likewise, if you enter a value that is
in the list associated with a dropdown list box, you can change the value
displayed in the dropdown list box. The cell reflects the value to which the
graphical object is set, regardless of the method used to set the value.

When you check or uncheck a check box, or select an item from a dropdown list
box, you set the value in the assigned cell.

■ For a check box, the value of the assigned cell is True if the graphical object is
checked or False if unchecked.

■ In a dropdown list box, you can choose to have the value of the assigned cell set
to the number or the text of the selected item. Items in a dropdown list box are
numbered starting with 0 (e.g., the first item is item 0, the second item is item 1,
and so on). -1 means that no item is selected in the dropdown list box.

138 Formula One ActiveX User’s Guide
Setting Values Interactively
To set the value of a check box or dropdown list box interactively, the graphical
object itself cannot be selected and the pointer must be in normal worksheet editing
mode.

■ To set the value of a check box, position the pointer anywhere in the check box
area and click. The check box toggles between checked and unchecked states.

■ To set the value of a dropdown list box, position the pointer anywhere in the
dropdown list box area and click. The list of items contained by the dropdown list
box is displayed. If the list area is not large enough to display all the items, you
may have to click the scroll areas to view the entire list. Then, click the item you
want to select.

Setting Values Programmatically
Set the ObjValue property to set the value of a check box or dropdown list box
specified by graphical object ID number.

■ For check boxes, provide 1 to check a check box; provide 0 to uncheck the
graphical object.

■ For dropdown list boxes, provide the number of the item you want to select.
Dropdown list box items are numbered consecutively, starting with 0. If you
specify -1, no item is selected in the dropdown list box.

Return the value of ObjValue to get the value of the current selection.

■ For dropdown list boxes, you can also use ObjText to set or return the text
displayed on a button or next to a check box.

Setting Values by Cell Reference
For both check boxes and dropdown list boxes, you can specify a cell that references
the graphical object. The referenced cell works in two ways:

■ If you select an item from the graphical object, the value or text of that selection
is displayed in the referenced cell. For example, if you uncheck a check box,
FALSE is placed in the cell the check box references.

■ If you enter a valid value in the referenced cell, the current selection of the
graphical object reflects the cell value. For example, if you enter 0 in the cell, a
dropdown list box that references the cell displays its first item as the current
selection.

If multiple graphical objects reference the same cell, making a selection in one
graphical object makes the same selection in all graphical objects that reference the
cell.

The cell reference for a graphical object can be set in the Options tab of the Format
Object dialog box.

Chapter 8 Working With Graphical Objects 139
➤ To display or locate a cell reference interactively:

1. Select Format > Object to display the Format Object dialog box.

2. Select the Options tab.

3. If desired, type a cell reference in the Cell text box.

4. Click OK.

You can also specify a cell reference by calling the ObjSetCell method. ObjGetCell
returns an object cell reference. Furthermore, you can specify a cell reference by
using the ObjCellType, ObjCellRow, and ObjCellCol properties. For dropdown list
boxes only, you can specify whether the value or text of the selection is displayed in
the cell.

Editing Polygons
When editing polygons, there are two editing modes:

■ Normal Polygon Editing. This mode allows you to resize and move polygons.
Editing of polygon points is not allowed in this mode.

■ Polygon Point Editing. This mode allows you to reposition polygon points, thus
changing the shape of the polygon.

You can set the polygon editing mode by setting the PolyEditMode property. To
determine the current polygon editing mode, return the value of PolyEditMode.

In the Workbook Designer, to use normal polygon editing click the polygon and
move the selection handles appropriately. If you want to use polygon point editing,
click the polygon point editing tool and move the selection handles of the polygon.
The following illustration shows a selected polygon when normal polygon editing
and polygon point editing modes are enabled.

When normal polygon editing mode is enabled, the
selection handles appear at the edges of the bounding
box that surrounds the polygon.

In this mode, the polygon can be resized and moved.

When polygon point editing mode is enabled,
a selection handle appears at each point along
the border of the polygon.

In this mode, the polygon points can be
repositioned and the polygon can be moved.

140 Formula One ActiveX User’s Guide
➤ To interactively reshape a polygon:

1. Select the polygon to be reshaped.

2. Make certain that polygon editing mode is enabled.

When polygon editing mode is enabled, selection handles appear at each point
along the border of the selected polygon.

3. Position the pointer on the polygon point that you want to move.

4. Click the point and drag the mouse.

An outline of the lines adjoining the point move as you drag the polygon point.

5. Release the mouse button to place the point at its new location.

Chapter 9 Working With Chart Objects 141
C H A P T E R 9

Working With Chart Objects

If you have also purchased Tidestone’s First Impression ActiveX control, you can
automatically chart worksheet data. In order to draw a chart, First Impression must
be properly installed on your system. The following illustration shows an example of
a chart on a worksheet.

Creating Charts
➤ To create a chart programmatically:

■ Use the ObjCreate with the F1ObjChart constant or the ObjNew method. These
methods draw a chart object on the worksheet in the position you specify and
chart the currently selected range.

■ To change a chart’s data range, you must select it, open the Format Object dialog
box, select the Options tab, and provide a range reference or defined name for the
chart.

➤ To interactively chart data:

1. Select a range of data to be charted.

2. Click the chart tool in the toolbar or select Insert > Chart.

This is the source range
for the chart.

142 Formula One ActiveX User’s Guide
3. Using the chart tool, draw a rectangle where you want to place the chart.

The Chart Wizard appears to assist you in designing the chart appearance.

4. Make any necessary selections from the Chart Wizard and click Finish.

Using the Chart Wizard
The pages within the Chart Wizard guide you through most common design
decisions required when you create or modify a chart. The Chart Wizard is displayed
automatically when you draw a new chart on a worksheet. You can also display the
Chart Wizard at any time to assist you in formatting an existing chart.

Important Each chart type has individual requirements as to how the data must be
laid out. Separate formatting options are also available for different chart types.
You should read your First Impression User’s Guide to familiarize yourself with
the requirements of various chart types.

➤ To access the Chart Wizard:

1. Double-click on the chart to activate it.

2. Right-click the chart to display the context menu and select Wizard.

Navigating in the Chart Wizard
The Chart Wizard allows you to control various design aspects such as choosing a
chart type, setting chart options, controlling chart layout, and specifying chart and
axis titles. Use the navigation buttons at the bottom of the Wizard pages to navigate
through the Chart Wizard.

Aborts changes and
closes the Wizard

Displays previous
Wizard tab

Displays next
Wizard tab

Applies modifications and
closes the Wizard

Chapter 9 Working With Chart Objects 143
Using the Gallery Page
The Gallery Page allows you to select the type of chart you wish to design. Two
radio buttons allow you to differentiate between 2D chart types and 3D chart types.

Using the Style Page
The Style Page lets you set the style for the selected chart type. Using the style
page, you can easily set chart display options such as series labels, stacking, and
bar gap.

2D Charts 3D Charts

Series Labels

Bar Gap

Series Stacking

144 Formula One ActiveX User’s Guide
Using the Layout Page
The Layout Page provides methods for determining the elements and layout of the
chart plot such as chart titles, chart footnotes, and chart legends.

Using the Axes Page
The Axes Page allows you to optionally label chart axes. The chart preview image
on this page shows you how the chart looks with your settings.

Important When you use the Chart Wizard to modify existing charts, the Wizard
reverts the chart to its default settings and then restores only those features it
controls in the Gallery, Layout, and Axes tabs. Exercise care when modifying
charts that may have originally been created without the Wizard. You may need to
manually adjust some chart settings after using the Wizard.

Read data from grid
columns

Chapter 9 Working With Chart Objects 145
The Chart Wizard provides a quick and easy method for applying some of the most
common formatting options to your chart. Additional formatting options are
available by using the First Impression Chart Designer. The Chart Designer is
displayed by double-clicking on chart elements in an activated chart object, or
selecting Chart Designer from the First Impression context menu.

You can modify chart data by selecting Edit Chart Data from the First Impression
context menu. The Data Grid Editor will appear.

Consult your First Impression documentation for more information about the Chart
Designer, the Data Grid Editor, and other First Impression functions.

➤ To access First Impression functions:

1. Double-click on the chart object to activate it.

2. Right-click on the chart to display the context menu.

3. Make a selection from the menu.

Important One of the options on the First Impression context menu is Edit Chart
Data. This displays First Impression’s Data Grid Editor. Using this tool you can
modify the size and content of the chart’s data source. Any changes you make in
the Data Grid Editor are reflected in the chart, but are NOT reflected in the
worksheet. Also, if you use the Data Grid Editor to edit the chart data and then
recalculate the workbook in Formula One while the chart still references a range in

Double-click to
activate the chart
for formatting.

Right-click on the
chart to display
the First
Impression
context menu.

146 Formula One ActiveX User’s Guide
the worksheet, the worksheet data overwrites your changes. To prevent this, select
the chart, choose Format > Object, and replace the chart’s formula with an empty
string (" ") before using the Data Grid Editor to edit the data.

Chart Options
Within Formula One, you can control whether or not users can edit the chart and
change the source data range for a chart using the Options tab of the Format Object
dialog box.

➤ To edit chart options:

1. Select the chart.

2. Choose Format > Object to display the Format Object dialog box.

3. Select the Options tab.

Developer’s Note If you make the Workbook Designer available to your end users,
they will have access to the Allow User Changes check box. To prevent them from
modifying a chart regardless of this setting, set the AllowObjSelections property
to False.

Unselect this option to prevent
users from formatting the chart.

Formula identifying the source
data range for the chart.

Chapter 9 Working With Chart Objects 147
Referencing Data on Another Worksheet
You can also display a chart on one worksheet that references data on a separate
worksheet.

➤ To create a chart on a separate worksheet:

1. Select the chart.

2. Choose Format > Object to display the Format Object dialog box.

3. Select the Options tab.

4. Enter the formula referencing the data source on the other spreadsheet.

This worksheet provides
summary information
about the inventory data
stored on the worksheets
named Region 1 and
Region 2.

These cells contain
formulas that sum
information from the
worksheets individual
region.

The data source formula
for this chart object is
Summary!B3:D17

Tidestone

Chapter 10 Printing Worksheets 149
C H A P T E R 1 0

Printing Worksheets

Formula One provides many options for printing worksheets and setting printing
specifications.

■ You can print worksheets through the Workbook Designer.

■ You can use properties and methods of the F1PageSetup object to print
worksheets directly. See the Formula One online documentation for more
information on the F1PageSetup object and its properties. You can also use
methods to display the Page Setup and Printer Setup dialog boxes.

Printing Worksheets
You can print the active worksheet from the Workbook Designer, or from code.

➤ To print the active sheet from the Workbook Designer:

1. Select File > Print to display the Print dialog box.

2. You may preview the printout by pressing the Preview button. Formula One will
display the Print Preview dialog, shown on page 159.

3. Make any necessary adjustments to the settings and click OK.

➤ To print the active sheet from code:

■ Use the FilePrint method. The following code uses this method to print a
worksheet.

F1Book1.FilePrint TRUE

When you call FilePrint, the Print dialog box can be displayed, allowing you to
specify the pages to print, the number of copies to print, and other related items.

■ Use FilePageSetupDlgEx to display the Page Setup dialog box, which gives easy
access to setting margins, headers, footers, headings, grid printing, page ordering,
and output alignment. The following code displays the Page Setup dialog box.

F1Book1.FilePageSetupDlgEx

150 Formula One ActiveX User’s Guide
➤ To print selected sheets or the entire workbook from code:

■ Use the FilePrintEx method. The following code uses this method to print
selected worksheets or the entire workbook as a single document.

F1Book1.FilePrintEx bShowPrintDlg, bPrintWorkbook

When you call FilePrintEx, the Print dialog box can be displayed, allowing you
to specify the pages to print, the number of copies to print, and other related
items.

■ Use FilePrintSetupDlg to invoke the Print Setup dialog box; the standard
Windows printer setup dialog box is displayed. It allows you to select a printer,
select the paper source, and select the page orientation (portrait or landscape).
The following code displays the Print Setup dialog box.

F1Book1.FilePrintSetupDlg

Specifying Print Areas
Formula One prints the entire active worksheet unless you specify the ranges you
want to print. To specify the areas you want to print, you must set the Print_Area
name to reflect the worksheet area to be printed.

➤ To set the print area with menu commands in the Workbook Designer:

1. Select the ranges to print.

2. Select File > Print Area > Set Print Area.

The Print dialog default printing
selection can be changed by setting
the appropriate flag in the FilePrintEx
method.

Chapter 10 Printing Worksheets 151
➤ To set the print area using the Page Setup dialog box in the Workbook Designer:

1. Select File > Page Setup and click the Sheet tab. The Sheet tab of the Page Setup
dialog box will appear, as shown below.

2. In the Print Area text box, enter the range(s) on the selected worksheet(s) that you
want to print. You may enter absolute or relative cell references. Separate non-
contiguous ranges with commas. When you finish, click OK.

➤ To set the print area in code:

■ Use the PrintArea and PrintAreaLocal properties of the F1PageSetup object.

The following example uses the PrintArea property to set A1:D25 as the area to be
printed.

Dim pgSetup As F1PageSetup

Set pgSetup = F1Book1.CreateNewPageSetup
pgSetup.PrintArea = "A1:D25"
F1Book1.SetPageSetup pgSetup

You can select multiple ranges to print. The ranges do not have to be adjacent. For
example, a print area could be comprised of two ranges, A1:D4 and F5:I8.

Specifying Print Titles
You can specify row or column titles that you want printed on each page of your
worksheet. If you select a row, it is printed at the top of each page. If you select a
column, it is printed at the left edge of each page. You can select multiple rows or
columns, but they must be adjacent.

Important When setting print titles, you must select entire rows and columns.

If a print area was already set,
the range(s) will appear here.

152 Formula One ActiveX User’s Guide
➤ To set the print titles with menu commands in the Workbook Designer:

1. Select the rows or columns to use as print titles. You must select entire rows or
columns.

2. Select File > Print Titles > Set Print Titles.

➤ To set the print titles using the Page Setup dialog box in the Workbook
Designer:

1. Select File > Page Setup and click the Sheet tab. The Sheet tab of the Page Setup
dialog box will appear, as shown on page 151.

2. In the Print Titles text box, enter the row and/or column range(s) on the selected
worksheet(s) that you want to appear on every page of the printout. You may enter
absolute or relative cell references. Separate non-contiguous ranges with commas.
When you finish, click OK.

➤ To set the print titles in code:

■ Set the PrintTitles or PrintTitlesLocal property of the F1PageSetup object.

The following example uses the PrintTitles property to set rows 1 and 2 and column
A as print titles.

Dim pgSetup As F1PageSetup

Set pgSetup = F1Book1.CreateNewPageSetup
pgSetup.PrintTitles = "A1:IV2,A1:A65536"
F1Book1.SetPageSetup pgSetup

Specifying Page Breaks
Both horizontal and vertical page breaks can be specified on a worksheet. You can
specify page breaks interactively using the Workbook Designer, or you can use
methods and properties.

In the Workbook Designer, page breaks are always placed adjacent to the active cell.
When using methods, page breaks can be placed adjacent to the active cell or a cell
that you specify.

■ For horizontal (row) page breaks, the page break will be placed above the active
or specified cell.

■ For vertical (column) page breaks, the page break will be placed to the left of the
active or specified cell.

➤ To set page breaks in the Workbook Designer:

1. Select the cell adjacent to which you want to place page breaks.

2. Select Insert > Page Break.

Chapter 10 Printing Worksheets 153
➤ To remove page breaks in the Workbook Designer:

1. To remove a horizontal page break, select a cell in the row below the break. To
remove a vertical page break, select a cell in the column to the right of the break.

2. Select Insert > Remove Page Break.

➤ To set and remove page breaks in code:

There are several categories of page break methods. The AddPageBreak and
RemovePageBreak methods add page breaks adjacent to the active cell. The
following example uses these methods:

F1Book1.AddPageBreak
F1Book1.RemovePageBreak

AddRowPageBreak, AddColPageBreak, RemoveRowPageBreak, and
RemoveColPageBreak add and remove page breaks adjacent to the row or column
that you specify in the method. The following example uses the AddRowPageBreak
method:

Dim theRow As Long
theRow = 8
F1Book1.AddRowPageBreak theRow

NextRowPageBreak returns the next page break below the row that you specify in
the method. NextColPageBreak returns the next page break to the right of the
column that you specify in the method. The following example uses the
NextRowPageBreak method:

Dim nextBreak As Long
Dim theRow As Long
theRow = 20
nextBreak = F1Book1.NextRowPageBreak (therow)

154 Formula One ActiveX User’s Guide
Specifying Margins
You may set margins in inches or centimeters, or you may tell Formula One to use
whatever margins it takes to print the print area in the center of the worksheet. You
may also establish margins for headers and footers.

➤ To specify margins in the Workbook Designer:

1. Choose File > Page Setup. Click on the Margins tab. The Margins tab of the Page
Setup dialog box appears, as shown below.

2. Select the options you want. Click OK when you are done.

➤ To specify margins programmatically:

■ Use the following properties of the F1PageSetup object: TopMargin,
LeftMargin, BottomMargin, RightMargin, HeaderMargin, FooterMargin,
CenterHoriz, and CenterVert.

Click here to center the page
between the left and right
margins.

Click here to center the page
between the top and bottom
margins.

Use these boxes to enter the distance between the edge of the page and the
header or footer. If the header or footer margin is larger than the top or bottom
margin, the header or footer will overwrite the worksheet data on the page.

Chapter 10 Printing Worksheets 155
Setting Page Numbering
You may number the worksheet pages automatically starting at 1 or at any number
you choose.

Note By default, the page numbers you set here appear on the worksheet footer. To
change the location of the page number on the printout, change the worksheet footer
and/or header.

➤ To specify page numbering in the Workbook Designer:

1. Choose File > Page Setup. Click on the Page tab. The Page tab of the Page Setup
dialog box appears, as shown below.

2. Select the options you want. Click OK when you are done.

➤ To specify page numbering programmatically:

■ Use the AutoPageNumber and FirstPageNumber properties of the F1PageSetup
object.

To scale the worksheet in order
to make it fit on a certain number
of pages, click the Fit to button,
then enter the number of pages
tall and wide in these dialog
boxes.

Choose Automatic to start numbering pages at 1
(if this is the first or only worksheet in the print job)
or at the next sequential number (if this is not the
first worksheet in the print job).

If you don’t want page
numbering to start at 1, enter the
first page number here.

156 Formula One ActiveX User’s Guide
Specifying Headers and Footers
Headers are printed at the top of each page and footers are printed at the bottom. You
can define the alignment, contents, and formatting of headers and footers.

➤ To specify headers and footers in the Workbook Designer:

1. Choose File > Page Setup. Click the Header/Footer tab. The Header/Footer tab of
the Page Setup dialog box appears, as shown below.

2. Type text and special formatting codes in the Header and Footer boxes. See below
for information on special formatting codes. When you finish, click OK.

➤ To specify headers and footers programmatically:

■ Use the Footer and Header properties of the F1PageSetup object.

Formatting Codes for Headers and Footers
Header and footer codes allow you to format and align the text and to insert
worksheet-specific information, like page numbers and the worksheet name.

The alignment codes (&L, &C, and &R) must go before font-related codes (like &B
for bold and &I for italic). Codes for printing worksheet-specific information like
worksheet title go last. If you put the codes in the wrong order, Formula One may
ignore some of them. Enter codes in upper or lower case and separate them with a
space.

By default, codes and text are centered unless &L or &R is specified.

Format Code Description

&L Left-aligns the characters that follow.

&C Centers the characters that follow.

&R Right-aligns the characters that follow.

&B Use a bold font.

Chapter 10 Printing Worksheets 157
Setting Page Orientation
You may print pages in portrait or landscape orientation.

➤ To specify page orientation in the Workbook Designer:

1. Choose File > Page Setup. Click the Page tab. The Page tab will appear, as shown
on page 155.

2. Choose Portrait or Landscape, then click OK.

➤ To specify page orientation programmatically:

■ Use the Landscape property of the F1PageSetup object. If you do not set this
property, landscape printing can be handled using your system’s default Print
dialog box.

Setting Up Scaling for Printing
You may specify a specific scale percentage to print your chart. You can also force
the chart to print on a specified number of pages.

➤ To specify worksheet size and scale in the Workbook Designer:

1. Choose File > Page Setup and click the Page tab. The Page tab will appear, as
shown on page 155.

2. To specify a scale factor, enter it in the Adjust To text box.

&I Use an italic font.

&U Underline the header.

&S Strikeout the header.

&O Ignored.

&H Ignored.

&"fontname" Use the specified font.

&nn Use the specified font size (must be a two-digit number)

&D Prints the current date.

&T Prints the current time.

&F Prints the workbook name.

&A Prints the worksheet name.

&P Prints the page number.

&P+number Prints the page number plus number.

&P-number Prints the page number minus number.

&& Prints an ampersand.

&N Prints the total number of pages in the document.

Format Code Description

158 Formula One ActiveX User’s Guide
3. To force the chart to fit on a specified number of pages, click the Fit to button,
then enter the number of pages tall and pages wide you want the worksheet to fit
into.

4. When you finish choosing options, click OK.

➤ To specify worksheet size and scale programmatically:

■ Use the PrintScale, FitPages, PagesWide, and PagesTall properties of the
F1PageSetup object.

Specifying Page Printing Order
You may use the Page Setup dialog box to specify the order in which to print your
worksheet pages, or you may specify page order programmatically.

➤ To specify page order in the Workbook Designer:

1. Choose File > Page Setup and click the Sheet tab. The Sheet tab will appear, as
shown on page 151.

2. To print from the top to bottom margins, click Top to Bottom. The data in the
leftmost columns prints before the data in columns farther out.

3. To print from the left to right margins, click Left to Right. The data in the
uppermost rows prints before the data in lower rows.

4. Click OK.

➤ To specify page order programmatically:

■ Use the LeftToRight property of the F1PageSetup object.

Choosing Paper Size
➤ To specify paper size in the Workbook Designer:

1. Choose File > Page Setup and click the Page tab. The Page tab will appear, as
shown on page 155.

2. Choose the paper size from the dropdown list box, then click OK.

➤ To specify paper size programmatically:

■ Use the PaperSize property of the F1PageSetup object.

Specifying Miscellaneous Printing Options
Formula One lets you choose whether or not you want certain worksheet page
elements to appear on the printout and whether you want your printout in color or
black and white.

Chapter 10 Printing Worksheets 159
➤ To specify miscellaneous printing options in the Workbook Designer:

1. Choose File > Page Setup and click the Sheet tab. The Sheet tab will appear, as
shown on page 151.

2. Check the Grid Lines box if you want grid lines to appear on the printout.

3. Check the Black & White box if you want any colored elements on the worksheet
to be printed in shades of gray.

4. Check the Row Heading and Column Heading boxes to make row and column
headings appear on the printout.

5. Click OK when you are done.

➤ To specify miscellaneous printing options programmatically:

■ Use the BlackAndWhite, GridLines, RowHeadings, and ColHeadings
properties.

Previewing Your Printout
Formula One lets you preview the pages that are going to print. You can preview the
printout of your worksheet(s) from the Workbook Designer, or you can use properties
and methods.

➤ To preview your printout in the Workbook Designer:

1. Choose File > Print Preview. The Print Preview screen appears, as shown below.

If your printout has multiple pages, you
can use the Next Page and Prev Page
buttons to view the different pages.

160 Formula One ActiveX User’s Guide
■ An image of what the printout will look like appears on the screen, showing the
margins, headers and footers, print titles, page breaks, and other printing features
discussed in this chapter. When you finish, click Close.

■ To print the worksheet(s) directly from this screen, click Print. Formula One
prints all pages as shown, without showing you the Print dialog box, and closes
Print Preview.

➤ To preview your printout using properties and methods:

Formula One provides a three methods to simplify adding print preview functionality
to your application. As a developer, you can set the PrintPreviewEx method to
preview worksheets prior to printing.

This method allows a device context to be passed for painting the sheet. With
PrintPreviewEx a window handle and a rectangle are passed in, along with the page
number to display. The PrintPreviewEx method allows VB programmers and others
to add print preview functionality.

A simpler method of previewing worksheets utilizes the FilePrintPreview method.
By calling the FilePrintPreview method, you can display a dialog that previews the
printed page.

For MFC users, the PrintPreviewDCEx method can be used with the print preview
mechanism provided by MFC. The PrintPreviewDCEx method allows a device
context to be passed in for painting the sheet. A page number is also passed in and
the total number of pages in the sheet is passed back to the user.

Chapter 11 Working With Databases 161
C H A P T E R 1 1

Working With Databases

Database connectivity is one of Formula One’s most powerful features. You can use
Formula One, along with ODBC drivers, to retrieve data from a database and use it to
populate a Formula One worksheet at the starting row and column position you specify.
This ODBC connection offers incredible speed and flexibility in populating your
worksheet.

Overview of Formula One Connections
Database connections are made on a per worksheet basis. This means that you can
populate each worksheet in a workbook with data from a different query, or even a
different database. This is a powerful feature because Formula One worksheet
functions work across multiple worksheets.

As an example, you can query district sales information, and place information from
each district in a separate worksheet within the same workbook. On each worksheet,
you can perform summary calculations to show statistics for that district. You can also
add additional worksheets to the workbook that execute summaries or analysis on any
combination of the districts.

If you also purchase Tidestone’s First Impression charting tool, you can select a range
of data in a worksheet and draw a chart illustrating that data on the Formula One
worksheet.

Installing the ODBC Drivers
In order to connect a Formula One worksheet to a database via ODBC, you must have
the 32-bit version of the ODBC drivers installed on your system. These drivers come
with most 32-bit development environments such as Visual Basic 4.0, Office95, and
Visual C++ 2.x. When you install these environments be sure to select the ODBC
option. If you have already installed your development environment, you can re-install
and check only the ODBC option. Be aware that different environments offer different
drivers. Please contact your development environment vender for information about
the drivers available.

162 Formula One ActiveX User’s Guide
Setting up a Data Source
You can create a new data source from within Formula One, or you might find it more
convenient to set up your data sources outside of Formula One.

➤ To set up a data source outside of Formula One:

1. Double-click the ODBC icon in the Control Panel to bring up the Data Sources
dialog box.

2. Click Add to add a connection to the database you want to reach.

3. In the Add Data Source dialog box, choose the appropriate 32-bit driver for the
database you are connecting to and click Finish. This brings up an ODBC dialog
box based on the driver you chose.

4. Enter a Data Source Name and Database Name that describe the database you
want to connect to and click OK.

Connecting to the Data Source
Formula One provides the F1ODBCConnect API object used with the
ODBCConnectEx method to connect the active worksheet to a database. In addition,
Formula One provides the ODBCConnect method to connect the active worksheet to
a database.

If you are using the ODBCConnectEx method to connect the active worksheet to a
data source, you provide ODBC connection with the following:

■ a connect object (F1ODBCConnect).

■ a boolean that controls whether SQL errors are displayed.

The following code example shows the use of this object and method:

If Command1 = True Then
Dim pConnect As New F1ODBCConnect
Dim F1obdcconnect As String
pConnect.ConnectStr = F1ODBCConnect
F1Book1.ODBCConnectEx pConnect, True

connecterror:
MsgBox Error

To allow the user to select the database at runtime, the F1ODBCConnect object
should be equal to a null string.

Chapter 11 Working With Databases 163
If you are using the ODBCConnect method to connect the active worksheet to a data
source, you provide ODBC connection with the following:

■ a variable containing a connect string.

■ a boolean that controls whether SQL errors are displayed.

■ a variable that receives the returned SQL status code.

The following code example shows the use of this method:

On Error GoTo ConnectError
Dim returnCode As Integer, pConnect As String
F1Book1.ODBCConnect pConnect, True, returnCode

Exit Sub
ConnectError:

MsgBox Error

The connect string must be a variable. This allows you to let the user select the
database at runtime and returns the data source in the connect string.

Next, a dialog box is displayed, allowing the user to select or create a file data source
or machine data source at runtime. The following illustration shows the File Data
Source tab of the Select Data Source dialog box

If you want to create a new data source, click New. This launches the ODBC
Datasource Administrator Utility for your database. For more information, consult
your database administrator documentation.

For more information about ODBCConnect or ODBCConnectEx, refer to the
Formula One online documentation.

This selection describes the driver for
which you want to connect. You can use
any file data source that refers to an
ODBC driver on your machine.

Click New to create a new data source.

164 Formula One ActiveX User’s Guide
Querying the Data Source
Once you connect to a data source, you can build and execute a query. This is
accomplished using Formula One’s F1ODBCQuery API object and ODBCQueryEx
method or the ODBCQuery method.

If you are using ODBCQueryEx, you must provide the following information:

■ an ODBC query object.

■ if the query string is null, the ODBC Query dialog box is displayed to allow the
user to build the query at runtime.

■ row and column coordinates that identify where in the active worksheet the
returned data is to be placed.

■ a boolean that determines whether the ODBC Query dialog box is displayed.

■ variables that control whether data and data type information is used to format the
worksheet size, column headings, column width, and cell formatting.

■ a variable that received the returned status code.

Below is the code that implements this in the demo.

On Error GoTo FetchError
Dim pConnect As New F1ODBCConnect
Dim pQuery As New F1ODBCQuery
Dim bShowDlg As Boolean

’connect to SouthCreek database
pConnect.ConnectStr = "DSN=SouthCreek"
F1Book1.ODBCConnectEx pConnect, True

’prompt for query at runtime
’initially , query Is Empty
’Cell format, column names, column width, and the maximum
’number of rows and columns displayed is determine
’from the data that is retrieved from the database

pQuery.SetColFormats = True
pQuery.SetColNames = True
pQuery.SetColWidths = True
pQuery.SetMaxRC = True
pQuery.QueryStr = ""
bShowDlg = True

F1Book1.ODBCQueryEx pQuery, 1, 1, bShowDlg

Exit Sub
FetchError:
MsgBox Error

Chapter 11 Working With Databases 165
If you are using ODBCQuery, you must provide the following information:

■ a variable that specifies the query syntax. If you pass a null string for this
argument, the ODBCQuery dialog box is displayed to allow the user to build the
query at runtime. The query string must be passed as a variable. This allows you
to let the user build the query at runtime and returns the final query string.

■ row and column coordinates that identify where in the active worksheet the
returned data is to be placed.

■ a boolean that determines whether the ODBCQuery dialog box is displayed.

■ variables that control whether data and data type information is used to format the
worksheet size, column headings, column width, and cell formatting.

■ a variable that received the returned status code.

Below is the code that implements this in the demo:

On Error GoTo FetchError
Dim returnCode As Integer, query As String
Dim setColNames As Boolean, setColFormats As Boolean
Dim setColWidths As Boolean, setMaxRC As Boolean
Let query = cboQueries.TEXT
setColNames = chkSetColNames.Value
setColFormats = chkSetColFormats.Value
setColWidths = chkSetColWidths.Value
setMaxRC = chkSetMaxRC.Value
F1Book1.ODBCQuery query, Val(txtStartRow.TEXT),

Val(txtStartCol.TEXT), optShowDialog.Value, setColNames,
setColFormats, setColWidths, setMaxRC, returnCode

Exit Sub
FetchError:
MsgBox Error

166 Formula One ActiveX User’s Guide
If the query string is null or you set the bShowDialog value to True, the query dialog
is displayed as shown in the following illustration.

■ Set Column Widths. Check this box to automatically set the width of each column
to be wide enough to display the widest data in the column.

■ Set Column Names. Check this box to display field names instead of the standard
alphabetic column headings. Even though field names are displayed as the
column headings, formulas must still use the standard cell referencing
conventions (e.g., A1).

■ Set Column Formats. Check this box to have formats for date, time, and currency
fields set automatically when data is placed in the worksheet. If you do not check
this box, you must set the formats for these columns manually.

■ Set MaxRow & MaxCol. Check this box to have the maximum number of worksheet
rows and columns set to the number of records and fields returned by the query.

Connection Information

Use these Table and Fields
lists to assist you in building
your query.

Type the SQL syntax for your
query in this text box.

Chapter 11 Working With Databases 167
When you click OK in the ODBC Query dialog box, the query is executed. The
following example shows the results of a returned query.

Note To maintain Excel compatibility, each cell is limited to 256 characters. If the
returned data exceeds this limit, the text is truncated to fit in the cell

Updating or Inserting Data
Formula One supports the use of prepared SQL statements to update database data, or
insert or delete database records. Following is an overview of this process:

■ Establish a database connection using ODBCConnectEx or ODBCConnect.

■ Build a PREPARE statement using ODBCPrepareEx or ODBCPrepare.

■ If necessary, bind the PREPARE statement parameters to worksheet columns
using one or more ODBCBindParameterEx or ODBCBindParameter methods.

■ Execute the PREPARE statement with ODBCExecuteEx or ODBCExecute.

In addition, Formula One provides tools for handling errors that occur during this
process:

■ ODBCError. ODBCError can be checked after failure of any Formula One ODBC
method.

■ ODBCErrorMsg. The ODBCErrorMsg property returns a detailed message of the
error that occurred.

■ ODBCNativeError. The ODBCNativeError property displays ODBC native error
information to the user following an ODBC method failure.

Notice that Set Column Names and Set MaxRow and Max Column have been set to True. Column labels
have been replaced with database field names and the size of the worksheet has been adjusted to the
number of returned columns and rows.

168 Formula One ActiveX User’s Guide
■ ODBCExecuteError. The ODBCExecuteError event allows you to determine
what happens if an error is encountered during the execution of the prepared
statement.

■ ODBCSQLState. The ODBCSQLState property shows an SQL state error number
after failure of any Formula One ODBC method.

A common way you might want to incorporate these features into a Formula One
application is to populate a worksheet with database data using ODBCQueryEx or
ODBCQuery which allows the user to edit the information, and then update the
database with the user updates. You can use the EndEdit event to determine if the user
has made changes, or the SelChanged event to determine when a user leaves a
particular row.

Using PREPARE Statements
ODBCPrepareEx or ODBCPrepare sends an SQL string to the database via ODBC.
For specific information about creating PREPARE statements, refer to your SQL
documentation.

The string sent by ODBCPrepareEx or ODBCPrepare can be any valid SQL
statement. Formula One does not attempt to parse or modify the statement before
sending it to SQLPrepare. ODBCPrepareEx or ODBCPrepare are specifically
designed to provide you a way to perform UPDATE, INSERT, and DELETE operations
from within your Formula One code. It is NOT recommended that you use
ODBCPrepareEx or ODBCPrepare to send SELECT statements from the database
in order to populate a worksheet with data. ODBCQueryEx or ODBCPrepare are
optimized to retrieve data from a database and display it in worksheet columns more
efficiently.

A PREPARE statement can contain static or dynamic information. You would use
static parameters when you have a single, well-defined change to make to the database.

The following code for ODBCPrepareEx adds a new record to the Product table.

retcode = F1Book1.ODBCPrepareEx ("INSERT INTO Product
(id,name,description,size,color,quantity,unit_price) VALUES
(701,Sunglasses,wrap-around,Medium,Black,80,75)")

The following code for ODBCPrepare adds a new record to the Product table.

F1Book1.ODBCPrepare "INSERT INTO Product
(id,name,description,size,color,quantity,unit_price)",
"VALUES (701,Sunglasses,wrap-around,Medium,Black,80,75)",
retCode

However, when working with worksheets, you more commonly want to supply data
from the worksheet as a parameter in your PREPARE statement. For example, if you
have a number of new authors listed in a worksheet and you want to add them all to
your database you could use variable parameters to make your PREPARE statement
more dynamic. In this way you can supply data from the worksheet as the statement is
executed.

Chapter 11 Working With Databases 169
The following code for ODBCPrepareEx allows the user to supply data to the
worksheet as the statement is executed:

retcode = F1Book1.ODBCPrepareEx ("INSERT INTO Product SET (id = ?,
name = ?, description = ?, size = ?, color = ?, quantity =
?, unit_price = ?)")

The following code for ODBCPrepare allows the user to supply data to the worksheet
as the statement is executed:

F1Book1.ODBCPrepare "INSERT INTO Product SET id = ?, name = ?,
description = ?, size = ?, color = ?, quantity = ?,
unit_price = ?", retCode

In this case, each of the question marks is a variable parameter tag that must be bound
to a worksheet column using the ODBCBindParameterEx.

Binding Worksheet Columns
When you use variable parameter tags in an ODBCPrepareEx or ODBCPrepare
statement, you must bind each parameter to a column in the worksheet and identify the
type of data that is located in that worksheet column. If the ODBCPrepareEx or
ODBCPrepare statement contains two variable parameter tags, it must be followed by
two separate ODBCBindParameterEx or ODBCBindParameter statements.

The following example uses ODBCBindParameter to creates a PREPARE statement
and binds parameters in the PREPARE statement to columns in the illustrated
worksheet.

F1Book1.ODBCPrepare "INSERT INTO Product SET id = ?, name = ?,
description = ?, size = ?, color = ?, quantity = ?, unit_price =
?", retCode

Binds the first question mark to the second worksheet column and specifies that the
data type as Long.

F1Book1.ODBCBindParameter 1, 2, F1CDataLong, retcode

The following examples binds these columns.

170 Formula One ActiveX User’s Guide
Binds the second question mark to the second worksheet column and specifies the data
type as Character.

F1Book1.ODBCBindParameter 2, 2, F1CDataChar, retcode

If you do not provide a bind for each question mark in the PREPARE statement, the
ODBCExecute or ODBCExecuteEx statements fail.

Formula One does no checking to verify that the data in the column matches the type
you have specified. If there is a data conversion error during an ODBCExecuteEx or
an ODBCExecute, the ODBCExecuteError event is fired. ODBCExecuteError
allows you to trap for data conversion errors and determine a course of action. The
error handler also returns the affected row and column in the worksheet so that you can
determine which cell is causing the problem.

Executing PREPARE Statements
Once you create a PREPARE statement and bind any variable parameters to worksheet
columns, you are ready to execute the PREPARE statement.

ODBCExecuteEx and ODBCExecute use any information provided in
ODBCBindParameterEx or ODBCBindParameter statements to fill in the variables
in the ODBCPrepareEx or ODBCPrepare statement. They then attempt to execute
the PREPARE statement. If you are filling in parameters with worksheet data, the
ODBCExecuteEx or ODBCExecute methods also identify which worksheet rows to
process.

Important If any Formula One ODBC statement other than ODBCError,
ODBCSQLState, ODBCNativeError, ODBCErrorMsg,
ODBCBindParameterEx, or ODBCBindParameter are placed between
ODBCPrepareEx or ODBCPrepare and ODBCExecuteEx or ODBCExecute, the
PREPARE string you were attempting to build is lost and the execute fails.

The following example for ODBCExecute processes the bound data in the first 11
rows of the spreadsheet through the PREPARE statement.

F1Book1.ODBCExecute 1, 11, retCode

If an error occurs during an ODBCExecuteEx or ODBCExecute, an ODBCError,
ODBCSQLState, ODBCNativeError, or ODBCErrorMsg is executed. You can
provide code to determine what happens when an error is encountered.

Disconnecting from the Data Source
After your query you should disconnect from the database. This is done with the
ODBCDisconnect method. Following is a code example showing the use of this
method.

F1Book1.ODBCDisconnect

Chapter 12 Using Formula One With the Internet 171
C H A P T E R 1 2

Using Formula One With the Internet

Using Formula One, you can save an entire worksheet in HTML format for use on
the Internet, or embed a Formula One worksheet in an existing HTML file. You
can write only the HTML data or pass the full design capabilities of the Workbook
Designer to your HTML document.

Formula One can also be used by containers for Internet and corporate Intranet
application development. The Formula One 5.0 ActiveX workbook control has
been digitally signed by Verisign Commercial Software Publishers CA and
supports the to IObjectSafety interface for secure data.

There are a number of tools available to assist you in creating the necessary files
for displaying the Formula One ActiveX workbook control on your web page. For
an up-to-date list of tools and instructions on how to obtain them, visit our website
at http://www.tidestone.com/internet.

Writing out a Worksheet File in HTML Format
Formula One users can save a worksheet in HTML format using the File > Write
command.

The Write dialog box gives them the option of saving the document as:

■ HTML. HTML format including data formatting, font and color information.

■ HTML (Data Only). HTML format includes data formats, but excludes font and
color information.

➤ To write a document to HTML programmatically:

■ Use the SaveFileDlg or SaveFileDlgEx method to call the Write dialog box.
The following example uses SaveFileDlgEx to call the Write dialog box. The
default file type is set to HTML.

Dim pFileInfo As New F1FileSpec
pFileInfo.Name = F1Book1.Title
pFileInfo.Type = F1FileHTML
F1Book1.SaveFileDlgEx "Save As HTML", pFileInfo

172 Formula One ActiveX User’s Guide
Embedding Formula One Data in an HTML file

➤ To embed a Formula One worksheet in an existing HTML file:

1. Create a Formula One project and write some code utilizing the InsertHTML
method to embed the worksheet into an HTML file.

2. Create an anchor point (location) in the HTML file where you want the
worksheet embedded.

Utilizing the InsertHTML Method
The most important aspect of the InsertHTML method is declaring an
AnchorName variable. AnchorName identifies the location in your HTML file
where you wish to insert your Formula One worksheet. The following example
declares AnchorName = “data1” and inserts a worksheet into the HTML document
titled “mortgage.”

Private Sub Command1_Click()
Dim nRow1 As Long
Dim nCol1 As Long
Dim nRow2 As Long
Dim nCol2 As Long
Dim nSheet As Long
Dim pAnchorName As String
pAnchorName = "data1"
nRow1 = 1
nCol1 = 1
nRow2 = 10
nCol2 = 5
nSheet = 1
F1Book1.InsertHTML nRow1, nCol1, nRow2, nCol2, nSheet, App.Path &

"\mortgage.HTML", True, pAnchorName
End Sub

Creating an Anchor in your HTML Source File
Depending on the HTML editor you are using, the technique used to create an
anchor or target location in your HTML document might vary. Consult your
HTML editor documentation for details on how to edit HTML files.

The following example shows the HTML markup code for an anchor and anchor
description “data1”.

<CENTER><P></P></CENTER>

Chapter 12 Using Formula One With the Internet 173
HTML Document Design
The final HTML document design depends on the limitations of your HTML
editor and your own creative ability. Formula One allows you to pass the full
design capabilities of the Workbook Designer to your HTML document through
the Write method and the HTML file type. When writing a worksheet file, you
can save your file as a number of file types. By choosing the HTML file type, you
ensure that any worksheet design characteristics such as font, text alignment, and
color are passed to your HTML document. If you choose to write your file as an
HTML (Data only) file type, you save text without any design attributes.

Introducing Internet Application Development
Formula One can be used by containers for Internet and corporate Intranet
application development. The Formula One ActiveX workbook control has been
digitally signed by Verisign Commercial Software Publishers CA and supports the
to IObjectSafety interface for secure data.

Viewing a Web Page Containing Formula One
When a browser encounters a web page containing an ActiveX control, a unique
exchange of information must take place between the browser and the web server
before the ActiveX control is rendered on the page.

First, the Browser program checks to see if a copy of the ActiveX control resides
on the client’s computer. If not, the browser extracts the Formula One ActiveX
control (and any dependent files) from the Cabinet file that resides on the server
and copy them to the client machine.

Next, the browser program parses a License Pack File on the server in order to
validate the license that was embedded in the Formula One control at design time.
The browser then passes the extracted license key to the Formula One control on
the client machine. If the license key from the .LPK file matches the Formula One
control’s license, the control is rendered on the web page.

174 Formula One ActiveX User’s Guide
Adding Formula One to your Web Page
In order to successfully add Formula One to your web page you must completing
the following tasks:

1. Create an HTML web page that contains the Formula One ActiveX control.

2. Create a License Pack File to use for registering the control on the browser
machine.

3. Create an .INF File that lists all of the control’s dependencies.

4. Create a Cabinet File to compress and store the files needed for downloading
by the browser program.

5. Copy the License Pack and Cabinet Files to your Internet Server where they
can be accessed by the browser program.

For specific instructions on how to create these files, visit our website at
http://www.tidestone.com/internet.

Using Methods and Events for Internet Development
Some containers (such as Microsoft’s Internet Explorer) cannot use ByRef
parameters. Formula One provides alternatives to the ByRef methods and events
currently offered in the API. Refer to your Formula One on-line help for more
information about the methods and events that are available as alternatives for
Internet development.

Understanding Formula One’s IObjectSafety Support
Formula One supports the IObjectSafety interface for Internet application
development. The IObjectSafety interface allows a control to instruct a container
that it is safe for initialization or scripting. On an Internet download, the browser
can request that the control enter safe mode. When this request is detected, the
following methods are disabled so they do not harm the user’s system:

Draw FilePrint FilePrintEx

FilePrintPreview GetTabbedText InsertHTML

ObjCreatePicture ObjNewPicture ObjSetPicture

ODBCBind Parameter ODBCBindParameterEx ODBCConnect

ODBCConnectEx ODBCDisconnect ODBCError

ODBCErrorMsg ODBCExecute ODBCExecuteEx

ODBCNativeError ODBCPrepare ODBCPrepareEx

ODBCQuery ODBCQueryEx ODBCSQLState

OpenFileDlg OpenFileDlgEx PrintDevMode

PrintPreview PrintPreviewDC PrintPreviewDCEx

PrintPreviewEx Read ReadEx

Chapter 12 Using Formula One With the Internet 175
The following worksheet functions are also disabled in your browser when the safe
request is detected:

Note If you want to load a workbook from an Internet address, use the URL
property. For additional information about this property, refer to the Formula One
Online Documentation.

Understanding Formula One’s Safe Events
Formula One provides alternative events that are safe for use on the Internet. These
events are only fired if you set the DoSafeEvents property to True. The following
table includes a list of the events that are replaced with their safe counterparts.

ReadFromBlob SaveFileDlg SafeFileDlgEx

Write WriteEx WriteRange

WriteRangeEx WriteToBlob WriteToBlobEx

CALL

REGISTER.ID

Events Internet Alternative Events

BeforeReplace SafeBeforeReplace

Found SafeFound

EndEdit SafeEndEdit

ODBCExecuteError SafeODBCExecuteError

StartEdit SafeStartEdit

ValidationFailed SafeValidationFailed

Tidestone

Chapter 13 Performance Tuning and Specifications 177
C H A P T E R 1 3

Performance Tuning and Specifications

Using Performance Tuning
The following tips can help you make the most efficient use of memory and get the
best performance from Formula One.

■ Avoid formatting blank cells. It is more efficient to format an entire row or
column because no cells are created. When you format a blank range that does not
consist of whole rows or whole columns, Formula One must create empty cells
before it can apply the format. To find and eliminate blank formatted cells in your
worksheet, show cell markers by using the ShowTypeMarkers property. (You
can do this in the Workbook Designer by choosing Tools > Options, clicking the
General tab, and checking the Show Markers box.) With markers turned on,
Formula One will display a blue frame inside blank, formatted cells.

■ Build worksheets by rows instead of columns. Formula One allocates memory by
rows. You can save memory by building tables a row at a time, rather than a
column at a time. For example, fill cells in row 1 before moving to row 2, and so
on, rather than filling cells in column A before moving to column B, and so on.

■ Build ranges from the lower right corner. When building a table one cell at a time
from code, it is faster and more efficient to start in the lower right corner of the
area in which you are working. This ensures that the row pointers are allocated
simultaneously instead of one at a time. Likewise, each row is allocated once
instead of being reallocated as each cell is added.

■ Use values instead of formulas whenever possible.

■ Avoid adding empty rows and columns for white space. Adjust the row height or
column width to create white space instead of adding empty rows or columns. If
you must have additional white space on your worksheet, empty rows are more
efficient than empty columns.

■ Disable repainting when performing a series of operations. When performing a
number of sequential operations on a worksheet, disable repainting with the
Repaint property so the screen does not repaint after each operation. This
increases the speed of the operation and avoids unnecessary screen flashing.

178 Formula One ActiveX User’s Guide
■ Use methods to copy and move data. Use EditCopyRight, EditCopyDown,
CopyRange, CopyRangeEx, and MoveRange to copy and move cells. These
methods are much faster than using the clipboard. In addition, these methods
update cell references to maintain the integrity of your formulas.

Optimizing Formula One
Formula One allocates an array of row pointers for each row that has data. For each
row, it then allocates an array of column pointers. Rows that do not have data in them
only have a row pointer allocated for that row and not an array of column pointers for
that row. Therefore, it is better to fill the sheet by rows instead of columns when
possible.

 Since the row and column pointers are allocated based upon the last row or column
with data in them, it is best to load the sheet from the bottom-right up to the top-left.
This allows Formula One to allocate the entire array of row and column pointers
before it fills the sheet. With these arrays pre-allocated then it only has to allocate
space for each cell depending on the cell size.

If the Formula One sheet is not loaded from the bottom-right to the top-left, then the
arrays of row and column pointers must grow as the number of rows and columns
grow. Each time these arrays need to grow, it must find a contiguous block of
memory to hold the entire array. This leads to disk swapping and decreased speed.

If it is not possible to load the sheet from the bottom-right, then another way to pre-
allocate the arrays is to put a value in the bottom-right hand corner of the sheet. This
will pre-allocate the row pointers. In order to pre-allocate all the arrays of column
pointers, the entire column on the right would need to be loaded with a value. This
would be recommended if the number of columns is large. After the data has been
loaded into the sheet, then the cell at the bottom-right can be deleted. The sheet will
then re-evaluate the amount of memory that it needs and give back the rest. This will
speed up load times considerably.

Understanding Formula One’s Data Structure
There are three basic parts to a Formula One data structure: the row pointers, the cell
pointers, and the cells.

Formula Ones data structure starts with a set of row pointers. This row pointer array
is a contiguous block of memory containing one 4-byte pointer for each row. For
example, if you have a spreadsheet that contains 10 rows, the row pointer array
contains 10 pointers of 4 bytes each. As you add rows, this array expands.

Each row that is not blank consists of an array of cell pointers large enough to point
to the last cell in a row. The cell pointer array is a contiguous block of memory
containing one 4-byte pointer for each cell. So, if the last cell in a row is located in
column H (the eighth column), that row contains eight 4 byte pointers (for columns
A through H).

Chapter 13 Performance Tuning and Specifications 179
Finally, there are the cells themselves, which are small data structures containing the
cells contents. The structures include a cells value, its format, its formula, its font, its
alignment, and other cell attributes. Cells only exist in memory if they contain
formulas or data or are formatted differently from the row or column in which they
are located.

Allocating and Freeing Memory
Generally speaking, it is an expensive operation to get memory from and return
memory to Windows (referred to as allocating and freeing memory). Every time a
spreadsheet has to obtain a new chunk of memory, time is consumed. Additionally,
allocating chunks of memory in varying sizes tends to fragment the memory pool. At
some point, you may need to obtain a piece of memory that is a certain size, and find
that it does not exist, although there is plenty of free memory scattered throughout
your system in small pieces.

Filling Worksheets with Data
Consider the case of filling a 1,000 row by 10 column spreadsheet with a set of
values or formulas. If you start from the top left corner, the first cell you create
causes the row pointer array to allocate one pointer to the first row. Then, the first
cell pointer is allocated in row 1. And finally, the first cell (A1) is allocated. When
you fill cell B1, the cell pointer array in row 1 increases to two pointers and cell B1
is created. This continues until all 10 cells in row one are created. If you are keeping
score, you will note that Formula One performed 21 memory allocations: one for the
row pointer, 10 for the cell pointers, and 10 for the cells themselves.

This operation can be optimized by filling the row from right to left. This causes the
cell pointer array to be allocated once, eliminating 9 memory allocations (and the
associated memory copying and freeing operations).

Continuing with the spreadsheet filling, row 1 is completed and you are ready to fill
row 2. Before you start filling the row, the row pointer array is expanded to 2 pointers
(one for each row). Then, row 2 is created just like row 1. Remember, our sample
spreadsheet contains 1,000 rows. So, the row pointer array is expanded 1,000 times.
This is unnecessary and very time consuming. By the time you reach the one-
thousandth row, Formula One is looking for a block of memory 4,000 bytes long
(since there is 4 bytes allocated for each row pointer).

This part of the operation can be optimized by filling the rows from bottom to top.
This causes the row pointer array to be allocated once instead of 1,000 times.

Employing these two simple optimizations reduces the number of memory
allocations from 21,000 (for 1,000 row pointers, 10,000 cell pointers, and 10,000
cells) to 11,001 (1 row pointer, 1,000 cell pointers, and 10,000 cells). But reducing
the number of memory allocations is only half the story.

180 Formula One ActiveX User’s Guide
When you expand the row pointer array or a cell pointer array, Formula One must
ask for a larger piece of memory, copy the contents of the current array into the new
memory array, and then return the previous memory block to the memory pool. The
9,999 memory operations you eliminated are the most expensive operations.

How can this be? The secret is that the optimized method for filling the worksheet
avoided dealing with fragmented memory, as happened with the slow method. As the
cell pointer arrays grew larger, the remaining chunks of free memory were not big
enough for the growing arrays. This caused Windows to start paging memory to disk
to produce large enough memory chunks.

You can achieve the same results without actually filling a worksheet from bottom to
top. When you start filling data, make sure the maximum-needed row pointer array is
allocated by entering a cell in the last row you are going to use. This forces a row
pointer array to be created that will accommodate your entire worksheet. Then, it
doesn’t matter what row you fill next because this array will not change. Likewise, if
you always create the last cell in any row first, the maximum-needed cell pointer
array is created. Then, you can enter the cells in that row in any order without
affecting performance.

Using Technical Specifications
The following table lists the technical specifications for the Formula One control.

Specifications

Maximum worksheet size 65,536 rows by 256 columns

Column width 0 to 255 characters

Row height 0 to 409 points

Text length 16,383 characters

Formula length 1024 characters

Number precision 15 digits

Largest positive number 9.99999999999999E307

Largest negative number -9.99999999999999E307

Smallest positive number 1E-307

Smallest negative number -1E-307

Maximum number of iterations 32,767

Maximum number of colors 56

Maximum number of available colors Limited by display card and monitor

Maximum number of fonts per workbook 256

Maximum number of selected ranges 2048

Maximum number of names per workbook Limited by available memory

Maximum length of name 255

Maximum number of function arguments 30

Chapter 13 Performance Tuning and Specifications 181
Maximum length of format string 255

Maximum number of tables (workbooks) Limited by system resources (windows and
memory)

Excel file format version Excel 5.0, 95, and 97

Specifications

Tidestone

Chapter 14 Creating Add-In Functions 183
C H A P T E R 1 4

Creating Add-In Functions

This chapter provides information about add-in functions—small programs that
extend the capabilities of Formula One. The examples presented here demonstrate
how to extend Formula One’s functions by adding the capability to use array
arguments in functions using Visual Basic and C++.

Formula One ActiveX Add-Ins in Visual Basic

General Design Principles
Formula One implements Add-Ins as ActiveX DLLs.

To function as a Formula One Add-In, an ActiveX DLL must, at a minimum,
implement a creatable class named F1Functions. When the DLL is registered with
Formula One either through the API or through the Add-In Manager dialog,
Formula One attempts to locate and create this class. Formula One only recognizes
the DLL as a valid add-in if the DLL implements a creatable F1Functions class.

Note In Visual Basic, the standard way to make a class creatable in an ActiveX
DLL is to set the class’s Instancing property to a value of 5. Visual Basic
describes such a class as MultiUse.

Formula One treats any member of the F1Functions class that follows the
guidelines set forth in this chapter as a worksheet function and ignores any
functions not meeting the guidelines.

All arguments must also be passed ByVal.

Note “ByVal” means “by value.” When a parameter is passed by value, anyone
referencing that parameter is prevented from modifying that variable’s value.

184 Formula One ActiveX User’s Guide
As Formula One’s add-in capabilities increase, future versions may look for new
classes in addition to F1Functions. To maximize compatibility with future
versions of Formula One, add-in developers should refrain from using the prefix
F1 on internal class names in their add-in DLLs—especially on classes that are
creatable.

Formula One presents the ActiveX DLL’s project description to end-users via the
Add-In Manager dialog; therefore, the project description should be an
informative phrase (typically no longer than a short sentence) describing the add-
in DLL. The Project Description field can be found on Visual Basic’s Project
Properties dialog under the General page.

Thread Safety
Although Formula One is single-threaded, future versions of Formula One may
support multithreading. If so, Formula One’s calc engine will create a separate
instance of F1Functions for each thread. This means that if your add-in functions
use only automatic variables or data defined within the F1Functions class, you
will not need to be concerned about thread safety. However, if you must refer to
data outside of F1Functions (for example, if all threads must share common data),
you are responsible for ensuring that your code is thread-safe.

Add-In Function Requirements
All arguments to an add-in function must be passed ByVal or the function will not
be recognized by Formula One. To use the F1AddInArray and
F1AddInArrayEx types, the Formula One control must be added to the project.

Formula One recognizes functions that use the following data types (all arguments
must be ByVal):

Type A
llo

w
ed

 a
s

A
rg

um
en

t

A
llo

w
ed

 a
s

R
et

ur
n

V
al

ue

Boolean Yes Yes

Double Yes Yes

F1AddInArray Yes No

F1AddInArrayEx Yes No

String Yes Yes

Variant* Yes Yes

Chapter 14 Creating Add-In Functions 185
*Use Variant when a single function can accept or return values of different types.
A Variant may also be of type vbEmpty. A Variant argument cannot accept a
reference to more than one cell. If you need to accept such references, you may
use F1AddInArray or F1AddInArrayEx instead.

F1AddInArray
Use the type F1AddInArray when using an area reference as an argument. You
must add the Formula One control to your project to use this type. F1AddInArray
will only accept a “simple” reference—a reference to a single 2d area. If you
specify a 3d area or union reference, the formula evaluator returns #VALUE!
without calling the add-in function. Use F1AddInArrayEx for support of 3d area
or union references.

The members of F1AddInArray are:

Function Rows() As Long

Function Cols() As Long

Function GetArrayType() As Long

Function GetValue(ByVal Row As Long, ByVal Col As Long)

Function IterStart() As Boolean

Function IterNext() As Boolean

Function IterGetValue() As Variant

Function IterGetValueEx(Row As Long, Col As Long) As Variant

F1AddInArray.GetArrayType always returns F1AddIn2dArea.

You may use IterStart and IterNext in a loop to iterate through the non-empty
elements of the array. This can be much faster than examining each element
individually when a sparsely populated array is expected.

Example Code
Dim Found As Boolean
Found = TheArray.IterStart()
While Found

’ Use IterGetValue or IterGetValueEx to
’ retrieve the value of the current element.

Found = TheArray.IterNext()
Wend

186 Formula One ActiveX User’s Guide
F1AddInArrayEx
You may also use the type F1AddInArrayEx when using an area reference as an
argument. Like F1AddInArray, F1AddInArrayEx accepts “simple” 2d area
references. However, F1AddInArrayEx also accepts 3d area and union references.
To only allow 2d area references, use F1AddInArray.

You must add the Formula One control to your project to use this type.

The members of F1AddInArrayEx are:

Function Areas() As Long ’ Number of Areas in Array

Function Rows(ByVal Area As Long) As Long ’Nbr Rows in Area

Function Cols(ByVal Area As Long) As Long ’Nbr Cols in Area

Function GetArrayType() As Long

Function GetValue(ByVal Area As Long, ByVal Row As Long, _

ByVal Col As Long)

Function IterStart() As Boolean

Function IterNext() As Boolean

Function IterGetValue() As Variant

Function IterGetValueEx(Area As Long, Row As Long, Col As Long) _

As Variant

F1AddInArrayEx.GetArrayType returns F1AddIn2dArea, F1AddIn3dArea or
F1AddInRegion.

Note You may use IterStart and IterNext in a loop to iterate through the non-
empty elements of the array. This can be much faster than examining each element
individually when a sparsely populated array is expected.

Visual Basic Example Add-Ins
Example 1

’ =ADDTHESE(1,2)
’ All arguments must be ByVal
Function AddThese(ByVal X As Double, ByVal Y As Double) _
As Double

AddThese = X + Y
End Function

Chapter 14 Creating Add-In Functions 187
Example 2
’ =CONCATENATETHESE("ABC","XYZ")
’ All arguments must be ByVal
Function ConcatenateThese(ByVal X As String, _
ByVal Y As String) As String

ConcatenateThese = X + Y
End Function

Example 3
’ =SUMOFRANGE(A1:C5)
’ All arguments must be ByVal
Function SumOfRange(ByVal Range As F1AddInArrayEx) _

As Double

 On Error GoTo ErrorHandler

 Dim Sum As Double
 Sum = 0

 Dim GotOne As Boolean

 GotOne = Range.IterStart
 While GotOne

 Sum = Sum + CDbl(Range.IterGetValue)
 GotOne = Range.IterNext

 Wend

 SumOfRange = Sum
 Exit Function

ErrorHandler:
 Err.Raise F1AddInValueError

End Function

Example 4
’ =MAKEERROR(TRUNC(RAND()*7)+1)
’ All arguments must be ByVal
Function MakeError(ByVal WhichOne As Double) _

As Double

Select Case WhichOne
Case 1

Err.Raise F1AddInNullError ’ #NULL!

Case 2
Err.Raise F1AddInDivZeroError ’ #DIV/0!

188 Formula One ActiveX User’s Guide
Case 4
Err.Raise F1AddInRefError ’ #REF!

Case 5
Err.Raise F1AddInNameError ’ #NAME?

Case 6
Err.Raise F1AddInNumError ’ #NUM!

Case 7
Err.Raise F1AddInNaError ’ #N/A

Case Else
Err.Raise F1AddInValueError ’ #VALUE!

End Select
End Function

Chapter 14 Creating Add-In Functions 189
Formula One C++ Add-In API

How Add-In Functions Are Declared
Formula One Add-Ins written in C++ implement each add-in function as an
individual callback function. They are “callback” functions because they will not
be exported by the DLL—they will be enumerated by a single exported function
called F1AddInInit.

Each add-in function implementation must adhere to the following declaration:

HRESULT CALLBACK F1AddInFunction(
LPVARIANTARG pResult,
int nReserved,
int nArgs,
LPVARIANTARG pArgs);

Where:

pResult is a pointer to the variant that holds the add-in function’s result.

nReserved is reserved for future use. The add-in function should ignore this
argument.

nArgs is the number of arguments being passed to the add-in function.

pArgs is a pointer to an array of nArgs variants, which are the arguments being
passed to the add-in function. The first argument is at index 0, the second is at
index 1, etc. If nArgs is 0, then this pointer is invalid.

Note Formula One’s formula evaluator always clears the variants pointed to by
pResult and pArgs. The add-in function should not clear these.

Return Value

The only valid return values for an add-in function are S_OK and
E_OUTOFMEMORY. To report a formula evaluation error, set pResult’s type
to VT_ERROR and its value to one of the error codes listed in “Formula
Evaluation Errors” on page 198, and return S_OK.

190 Formula One ActiveX User’s Guide
How Add-In Functions Are Exposed to Formula One
The following functions are used to initialize the plug-in for use within Formula
One.

F1AddinInit
The add-in DLL must export the F1AddInInit function, which is declared as
follows:

extern "C"
{
HRESULT __declspec(dllexport) __stdcall F1AddInInit(

F1AddInRegisterInfoProc RegisterInfoProc,
F1AddInRegisterFunctionProc RegisterFunctionProc,
int nReserved1,
int nReserved2);
};

Where:

RegisterInfoProc points to a callback function implemented by Formula One.
F1AddInInit calls this function to provide global information about the add-in
DLL such as its name and a short description.

RegisterFunctionProc also points to a callback function implemented by
Formula One. F1AddInInit provides information about the DLL’s add-in
functions to Formula One by calling this function once for each add-in function
that the DLL implements.

nReserved1 and nReserved2 are reserved for future use. The add-in should
ignore these arguments.

F1AddInRegisterInfoProc
This function is called from the add-in’s F1AddinInit code to register information
about the add-in. A pointer to this callback is paired to the add-in through the
F1AddinInit functions.

HRESULT CALLBACK F1AddInRegisterInfoProc(
LPWSTR pwszName,
LPWSTR pwszDescription,
int nReserved1,
int nReserved2);

Where:

pwszName is a Unicode string specifying the name of the add-in DLL. This
should be a short name of (typically) one or two words.

Chapter 14 Creating Add-In Functions 191
pwszDescription is a Unicode string describing the add-in DLL. This should
be a short descriptive phrase, no longer than a single sentence.

nReserved1 and nReserved2 must be zero so that the add-in ignores these
arguments.

F1AddInRegisterFunctionProc
Each function in the add-in must be registered by calling the
F1AddInRegisterFunctionProc function which is paired to the F1AddinInit entry
point.

HRESULT CALLBACK F1AddInRegisterFunctionProc(
LPWSTR pwszName,
int nReserved,
F1AddInFunction pFunction,
int nArgs);

Where:

pwszName is a Unicode string specifying the name of the add-in function. It is
not case sensitive.

nReserved must be zero.

pFunction points to an add-in function declared according to the description in
this chapter.

nArgs is the number of arguments expected by the function. If the add-in
function can accept a variable number of arguments, this should be –1;
otherwise, Formula One will not attempt to call the function with any number
of arguments other than nArgs.

How Arguments and Return Values Are Passed
Arguments and return values are passed between Formula One and the add-in
function using the VARIANT structure. In Formula One, an argument may have
any of the following value types:

VT_EMPTY
VT_R8
VT_BSTR
VT_BOOL
VT_ERROR
VT_UNKNOWN

Formula One accepts any of the above value types as an add-in function’s result
except VT_UNKNOWN.

192 Formula One ActiveX User’s Guide
When an add-in function encounters an argument of type VT_UNKNOWN, it
should use QueryInterface to obtain an interface it can use to retrieve the data. At
this time, the only interfaces implemented for this purpose are IF1AddInArray
and IF1AddInArrayEx.

■ Query for IF1AddInArray on an argument where you only want to accept
two-dimensional area references.

■ Query for IF1AddInArrayEx on an argument where you want to accept three-
dimensional area references. This interface also provides all the functionality
of IF1AddInArray.

If the add-in function fails to obtain a suitable interface through QueryInterface,
it should return the formula evaluation error code F1_E_VALUE. See “General
Design Principles” on page 183, for information on returning formula evaluation
errors.

IF1AddInArray interface
When an argument to an add-in function is a two-dimensional area reference,
Formula One passes that reference to the add-in function as an IF1AddInArray
interface. (The IF1AddInArrayEx interface is also implemented; the add-in
function may use whichever interface best suits its needs.)

IF1AddInArray, not technically an array, provides a mapping mechanism for
exposing a range in the workbook. In future versions of Formula One, the same
interface may expose true arrays to the add-in function.

This section describes the members of IF1AddInArray.

IF1AddInArray::Rows
Returns the number of rows in the array.

int Rows(void);

IF1AddInArray::Cols
Returns the number of columns in the array.

int Cols(void);

IF1AddInArray::GetArrayType
Returns the type of the array.

Int GetArrayType(void);

Return Value

IF1AddinArray returns one of the following constants:

Chapter 14 Creating Add-In Functions 193
F1ADDIN_AREA Formula One returns this constant when the
argument is a range reference, as in the formula =SUM(A1:C5).

F1ADDIN_ARRAY Not implemented in Formula One, this constant
would represent an array, as in the Excel formula
=SUM({1,2,3;4,5,6}).

IF1AddInArray::GetValue
Retrieves the value of the specified element in the array.

HRESULT GetValue(
int nRow,
int nCol,
LPVARIANTARG pResult);

Where:

nRow is the row index of the element to be retrieved.

nCol is the column index of the element to be retrieved.

pResult points to the variant that will receive the element’s value.

Return Value

If nSheet, nRow, or nCol fall outside of the array’s boundaries, the return
value is F1_E_REF. In this case, pResult’s variant is also set to F1_E_REF.
If the function succeeds, Formula One returns S_OK, and sets pResult’s
variant the value of the specified element in the array.

IF1AddInArray::IterStart
IF1AddInArray::IterNext
Iterates through the non-empty elements of the array.

BOOL IterStart(void);
BOOL IterNext(void);

To quickly iterate through the non-empty elements of an array, call
IF1AddInArray::IterStart for the first element and IF1AddInArray::IterNext
for each additional element until either of these functions returns FALSE. During
each iteration, call IF1AddInArray::IterGetValue or
IF1AddInArray::IterGetValueEx to retrieve the actual data. Formula One
returns the elements in an arbitrary order.

Routines that care about the location of the data should use
IF1AddInArray::IterGetValueEx, which indicates the row and column of the
current element.

Using these functions may be much faster than individually examining each
element in situations where a sparsely-populated array is expected.

194 Formula One ActiveX User’s Guide
Return Value

TRUE if successful; FALSE if there are no more non-empty elements.

 for (BOOL bGotOne = pAddInArray->IterStart();
 bGotOne;
 bGotOne = pAddInArray->IterNext())
 {
 // use IterGetValue or IterGetValueEx to
 // get the value of the current element
 }

IF1AddInArray::IterGetValue
IF1AddInArray::IterGetValueEx
Retrieves the value of the array element last selected by
IF1AddInArray::IterStart or IF1AddInArray::IterNext.

BOOL IterGetValue(LPVARIANTARG pResult);

BOOL IterGetValueEx(
LPINT pRow,
LPINT pCol,
LPVARIANTARG pResult);

Where:

pRow points to an integer that will receive the element’s row index.

pCol points to an integer that will receive the element’s column index.

pResult points to the variant that will receive the element’s value.

Return Value

If the last value returned by IF1AddInArray::IterStart or
IF1AddInArray::IterNext was TRUE, the return value is TRUE.

If the last value returned by IF1AddInArray::IterStart or
IF1AddInArray::IterNext was FALSE, or if neither of those functions has
yet been called, the return value is FALSE. When the return value is FALSE,
no values will be placed in pRow, pCol, or pResult.

IF1AddInArrayEx interface
When an argument to an add-in function is a two- or three- dimensional area
reference or a union, Formula One passes that reference or union to the add-in
function as an IF1AddInArrayEx interface. (For two-dimensional area
references, Formula One also implements the IF1AddInArray; the add-in
function may use the interface that best suits its needs.)

Chapter 14 Creating Add-In Functions 195
IF1AddInArrayEx, not technically an array, provides a mapping mechanism for
exposing a range in the workbook. In future versions of Formula One, the same
interface may expose true arrays to the add-in function.

This section describes the members of IF1AddInArrayEx.

IF1AddInArrayEx::Areas
Returns the number of areas in the array.

int Areas(void);

IF1AddInArrayEx::Rows
Returns the number of rows in an area of the array.

int Rows(
int nArea);

Where:

nArea is the index of the area whose row count will be returned.

IF1AddInArrayEx::Cols
Returns the number of columns in an area of the array.

int Cols(
int nArea);

Where:

nArea is the index of the area whose column count will be returned.

IF1AddInArrayEx::GetArrayType
Returns the type of the array.

int GetArrayType(void);

Return Value

IF1AddInArrayEx returns one of the following constants:

F1ADDIN_AREA: Formula One returns this constant when the
argument is a 2D area reference, as in the formula =SUM(A1:C5).

F1ADDIN_AREA3D: Formula One returns this constant when the
argument is a 3D area reference, as in the formula
=SUM(Sheet1:Sheet3!A1:C5).

F1ADDIN_ARRAY: Not implemented in Formula One, this constant
would represent an array, as in the Excel formula
=SUM({1,2,3;4,5,6}).

196 Formula One ActiveX User’s Guide
F1ADDIN_REGION: Formula One returns this constant when the
argument is a region reference, as in the formula
=SUM((A1:C5,A10:C12)).

IF1AddInArrayEx::GetValue
Retrieves the value of the specified element in the array.

HRESULT GetValue(
int nArea,
int nRow,
int nCol,
LPVARIANTARG pResult);

Where:

nArea is the area index of the element to be retrieved.

nRow is the row index of the element to be retrieved.

nCol is the column index of the element to be retrieved.

pResult points to the variant that will receive the element’s value.

Return Value

If nArea, nRow, or nCol, fall outside of the array’s boundaries, the return value
is F1_E_REF. In this case, pResult’s variant is also set to F1_E_REF. If the
function succeeds, the return value is S_OK, and pResult’s variant is set to
the value of the specified element in the array.

IF1AddInArray::IterStart
IF1AddInArray::IterNext
Iterates through the non-empty elements of the array.

BOOL IterStart(void);
BOOL IterNext(void);

To quickly iterate through the non-empty elements of an array, call
IF1AddInArrayEx::IterStart for the first element and
IF1AddInArrayEx::IterNext for each additional element until either of these
functions returns FALSE. During each iteration, call
IF1AddInArrayEx::IterGetValue or IF1AddInArrayEx::IterGetValueEx to
retrieve the actual data.

Formula One returns the elements in an arbitrary order.

Routines that care about the location of the data should use
IF1AddInArrayEx::IterGetValueEx, which indicates the row and column of the
current element.

Using these functions may be much faster than individually examining each
element in situations where a sparsely-populated array is expected.

Chapter 14 Creating Add-In Functions 197
Return Value

TRUE if successful; FALSE if there are no more non-empty elements.

Example

for (BOOL bGotOne = pAddInArrayEx->IterStart();
bGotOne;
bGotOne = pAddInArrayEx->IterNext())

{
// use IterGetValue or IterGetValueEx to
// get the value of the current element

}

IF1AddInArrayEx::IterGetValue
IF1AddInArrayEx::IterGetValueEx
Retrieves the value of the array element last selected by
IF1AddInArrayEx::IterStart or IF1AddInArrayEx::IterNext.

BOOL IterGetValue(LPVARIANTARG pResult);

BOOL IterGetValueEx(
LPINT pArea,
LPINT pRow,
LPINT pCol,
LPVARIANTARG pResult);

Where:

pArea points to an integer that will receive the element’s area index.

pRow points to an integer that will receive the element’s row index.

pCol points to an integer that will receive the element’s column index.

pResult points to the variant that will receive the element’s value.

Return Value

If the last value returned by IF1AddInArrayEx::IterStart or
IF1AddInArrayEx::IterNext was TRUE, the return value is TRUE.

If the last value returned by IF1AddInArrayEx::IterStart or
IF1AddInArrayEx::IterNext was FALSE, or if neither of those functions
has yet been called, the return value is FALSE. When the return value is
FALSE, no values will be placed in pRow, pCol, or pResult.

198 Formula One ActiveX User’s Guide
Formula Evaluation Errors
An argument to or return value of an add-in function of the type VT_ERROR
indicates a formula evaluation error. The errors recognized by Formula One are:

C++ Example Add-In
#include <windows.h>

#include <initguid.h>
#include "f1addin.h"
.
.
.
//
// RETURN.ME function (::ReturnMe)
//
// RETURN.ME accepts a single argument and returns that argument’s
// value. If the argument is a range reference, the top-left cell’s
// value is returned.
//
HRESULT CALLBACK ReturnMe(
 LPVARIANTARG pResult, // Pointer to the VARIANT receiving
 // the function’s result
 int, // Ignore this argument; it’s
 // reserved for future use
 int nArgs, // Number of arguments
 LPVARIANTARG pArgs) // Pointer to an array of nArgs
 // VARIANTs, each corresponding to
 // an argument being passed to the
 // add-in function. pArgs[0] is the
 // first (left-most) argument.
{
 if (nArgs == 1)
 {
 // VT_UNKNOWN requires special handling
 if (pArgs[0].vt == VT_UNKNOWN)
 {

Value Error Type

F1_E_NULL #NULL!

F1_E_DIVZERO #DIV/0!

F1_E_VALUE #VALUE!

F1_E_REF #REF!

F1_E_NAME #NAME?

F1_E_NUM #NUM!

F1_E_NA #N/A

Chapter 14 Creating Add-In Functions 199
 // We handle arrays; we don’t know about any other
 // interfaces, so all others are ignored here.
 IF1AddInArrayEx* pArray;
 if (SUCCEEDED(pArgs[0].punkVal>QueryInterface(
 IID_IF1AddInArrayEx, (LPVOID*)&pArray)))
 {
 // Copy the value of the top-left cell of the first
 // sheet or range to the result.
 pArray->GetValue(0, 0, 0, pResult);
 pArray->Release();

 return S_OK;
 }
 }
 else
 // Copy the argument’s value to the result.
 return ::CheckReturnValue(::VariantCopy(pResult,
 pArgs));
 }
 return ::MakeErrorResult(pResult, F1_E_VALUE);
}
//
// GET.IN.RANGE function (::GetInRange)
//
// GET.IN.RANGE returns an item at a specified location
// with a range.
// Formula Cell Returned
// -- -------------
// =GET.IN.RANGE(A11:C13,1,1) A11
// =GET.IN.RANGE(A11:C13,2,3) C12
// =GET.IN.RANGE(Sheet1:Sheet3!A11:C13,2,1,3) Sheet2!C11
// =GET.IN.RANGE((A1:C3,A11:C13),1,3,2) B3
//
HRESULT CALLBACK GetInRange(LPVARIANTARG pResult, int, int nArgs,
 LPVARIANTARG pArgs)
{
 if (nArgs == 3)
 {
 IF1AddInArray* pArray;

 // Try to get the array interface
 if (pArgs[0].vt == VT_UNKNOWN && SUCCEEDED(
 pArgs[0].punkVal->QueryInterface(IID_IF1AddInArray,
 (LPVOID*)&pArray)))
 {
 // Both coordinates must be of type double
 if (pArgs[1].vt == VT_R8 && pArgs[2].vt == VT_R8)
 {
 // If the coordinates are invalid, GetValue will put
 // #REF! in pResult, which is what we want.

200 Formula One ActiveX User’s Guide
 pArray->GetValue((int)pArgs[1].dblVal - 1,
 (int)pArgs[2].dblVal - 1, pResult);
 pArray->Release();
 return S_OK;
 }
 // Release the array; we can’t use it.
 pArray->Release();
 }
 }
 else if (nArgs == 4) // Four arguments: a three-dimensional
 // array
 {
 IF1AddInArrayEx* pArray;

 // Try to get the array interface
 if (pArgs[0].vt == VT_UNKNOWN && SUCCEEDED(
 pArgs[0].punkVal->QueryInterface(IID_IF1AddInArrayEx,
 (LPVOID*)&pArray)))
 {
 // All coordinates must be of type double
 if (pArgs[1].vt == VT_R8 && pArgs[2].vt == VT_R8 &&
 pArgs[3].vt == VT_R8)
 {
 pArray->GetValue((int)pArgs[1].dblVal - 1,
 (int)pArgs[2].dblVal - 1,
 (int)pArgs[3].dblVal - 1, pResult);
 pArray->Release();
 return S_OK;
 }
 pArray->Release();
 }
 }
 return ::MakeErrorResult(pResult, F1_E_VALUE);
}
//
// F1AddInInit
//
// This exported function (see AddIn.def) registers the add-in’s
// functions and other general information with Formula One.
// Formula One calls this function when it loads the add-in.
//
HRESULT __stdcall F1AddInInit(
 F1AddInRegisterInfoProc RegisterInfoProc,
 F1AddInRegisterFunctionProc RegisterFunctionProc,
 int,
 int)
{
 HRESULT hr = S_OK;

 if (SUCCEEDED(hr))

Chapter 14 Creating Add-In Functions 201
 hr = RegisterFunctionProc(
 L"RETURN.ME", // Name of the function as seen by the
 // end-user
 0, // Reserved for future use; must be 0
 ReturnMe, // Name of the function as implemented
 // in the DLL
 1); // Number of arguments expected.

 if (SUCCEEDED(hr))
 hr = RegisterFunctionProc(
 L"GET.IN.RANGE",
 0,
 GetInRange,
 -1);

 if (SUCCEEDED(hr))
 hr = RegisterInfoProc(
 F1AddInName. // Name of the add-in (defined at top
 // of the file)
 F1AddInDesc, // Description of the add-in
 0, // Reserved for future use; must be 0
 0); // Reserved for future use; must be 0

 return hr;
}
//
// DllMain
//
// Initialization may be done here or in F1AddInInit--whichever best
// suits your needs. See the Win32 API doc for more details about
// this function.
//
BOOL APIENTRY DllMain(HANDLE hModule, DWORD ul_reason_for_call,
 LPVOID lpReserved)
{
 return TRUE;
}

Tidestone

Chapter 14 A-Z Worksheet Function Reference 203
C H A P T E R 1 4

A-Z Worksheet Function Reference

This chapter provides a complete alphabetical reference for the Formula One
worksheet functions. Refer to Working With Datain this manual for additional
information about using worksheet functions.

ABS
Description Returns the absolute value of a number.

Syntax ABS (number)

Remarks An absolute value does not display a positive or negative sign.

Examples These functions both return 1:

ABS(–1)
ABS(1)

See Also SIGN

ACOS
Description Returns the arc cosine of a number.

Syntax ACOS (number)

Parameter Description

number Any number.

Parameter Description

number The cosine of the angle. The cosine can range from 1 to –1.

204 Formula One ActiveX User’s Guide
Remarks The resulting angle is returned in radians (from 0 to π). To convert the resulting
radians to degrees, multiply the radians by 180/PI().

Examples This function returns 1.05:

ACOS(.5)

This function returns 1.77:

ACOS(–.2)

See Also COS

ACOSH
Description Returns the inverse hyperbolic cosine of a number.

Syntax ACOSH (number)

Examples This function returns .62:

ACOSH(1.2)

This function returns 1.76:

ACOSH (3)

See Also ASINH
ATANH
COSH

Parameter Description

number Any number equal to or greater than 1.

Chapter 14 A-Z Worksheet Function Reference 205
ADDRESS
Description Creates a cell address as text.

Syntax ADDRESS (row, column, ref_type [, a1] [, sheet])

Examples This function returns F5:

ADDRESS(5, 6, 1)

This function returns SALES!F5:

ADDRESS(5, 6, 4, TRUE(), SALES.)

See Also COLUMN
OFFSET
ROW

Parameter Description

row The row number for the cell address.

The column number for the cell address.column

ref_type The cell reference type. Following are the valid values for this
argument.

Value Description

1 Absolute

2 Absolute row, relative column

3 Relative row, absolute column

4 Relative

a1 The reference format. This argument must be TRUE() to represent an
A1 reference format; Formula One does not support the R1C1
reference format.

sheet The name of an external worksheet view control. Omitting this
argument assumes that the reference exists in the current spreadsheet.

206 Formula One ActiveX User’s Guide
AND
Description Returns True if all arguments are true; returns False if at least one argument is false.

Syntax AND (logical_list)

Examples This function returns True because both arguments are true:

AND(1+1=2, 5+5=10)

This function returns False:

AND(TRUE(), FALSE())

See Also NOT
OR
ROW

ASC
Description In DBCS (Far-East) systems, this functions returns a copy of text in which the

double-byte characters are converted to single-byte characters, if possible. Characters
that cannot be converted are left unchanged.

Syntax ASC (text)

Remarks On non-DBCS systems, the text returns unchanged.

See Also DBCS

Parameter Description

logical_list A list of conditions separated by commas. You can include as many
as 30 conditions in the list. The list can contain logical values or a
reference to a range containing logical values. Text and empty cells
are ignored. If there are no logical values in the list, the error
#VALUE! is returned.

Parameter Description

text Text converted from double-byte characters to single-byte
characters.

Chapter 14 A-Z Worksheet Function Reference 207
ASIN
Description Returns the arcsine of a number.

Syntax ASIN (number)

Remarks The resulting angle is returned in radians (ranging from –π/2 to π/2). To convert the
resulting radians to degrees, multiply the radians by 180/PI().

Examples This function returns 1.57:

ASIN(1)

This function returns .41:

ASIN(.4)

See Also ASINH
PI
SIN

ASINH
Description Returns the inverse hyperbolic sine of a number.

Syntax ASINH (number)

Examples This function returns 2.37:

ASINH(5.3)

This function returns –2.09:

ASINH(–4)

See Also ACOSH
ASIN
ATANH
SINH

Parameter Description

number The sine of the resulting angle, ranging from –1 to 1.

Parameter Description

number Any number.

208 Formula One ActiveX User’s Guide
ATAN
Description Returns the arctangent of a number.

Syntax ATAN (number)

Remarks The resulting angle is returned in radians, ranging from –π/2 to π/2. To convert the
resulting radians to degrees, multiply the radians by 180/PI().

Examples This function returns 1.29:

ATAN(3.5)

This function returns –1.33:

ATAN(4)

See Also ATAN2
ATANH
PI
TAN

ATAN2
Description Returns the arctangent of the specified coordinates.

Syntax ATAN2 (x, y)

Remarks The arctangent is the angle from the x axis to a line with end points at the origin (0,
0) and a point with the given coordinates (x, y). The angle is returned in radians,
ranging from –π to π, excluding –π.

Examples This function returns 1.11:

ATAN2(3, 6)

This function returns 3.04:

ATAN2(–1, .1)

See Also ATAN2

Parameter Description

number The tangent of the angle.

Parameter Description

x The x coordinate.

y The y coordinate.

Chapter 14 A-Z Worksheet Function Reference 209
ATANH
PI
TAN

ATANH
Description Returns the inverse hyperbolic tangent of a number.

Syntax ATANH (number)

Examples This function returns .55:

ATANH(.5)

This function returns –.26:

ATANH(–.25)

See Also ACOS
ASINH
TANH

AVERAGE
Description Returns the average of the supplied numbers. The result of AVERAGE is also known

as the arithmetic mean.

Syntax AVERAGE (number_list)

Examples This function returns 8.25:

AVERAGE(5, 6, 8, 14)

Parameter Description

number A number between –1 and 1, excluding –1 and 1.

Parameter Description

number_list A list of numbers separated by commas. As many as 30 numbers
can be included in the list, and the list can contain numbers or a
reference to a range that contains numbers. Text, logical
expressions, or empty cells in a referenced range are ignored. All
numeric values (including 0) are used.

210 Formula One ActiveX User’s Guide
This function returns 134, the average of the values in the range C15:C17:

AVERAGE(C15:C17)

See Also MIN
MAX

CALL
Description Calls a procedure in a dynamic link library. There are two syntax forms of this

function. When CALL is used with REGISTER.ID, as shown in syntax 1, the DLL
is loaded and remains loaded until the program is dismissed. When CALL is used
alone, as shown in syntax 2, the DLL is loaded, the function is called, and then the
DLL is unloaded.

Important This function is provided for advanced users only. If you use the CALL
function incorrectly, you could cause errors that will require you to restart your
computer.

Syntax 1 Used with REGISTER.ID

CALL(register_id, argument1, ...)

Syntax 2 Used alone

CALL(module_text, procedure, type_text, argument1, ...)

Parameter Description

register_id The value returned by a previously executed
REGISTER.ID function.

argument1 The arguments to be passed to the procedure.

module_text Quoted text or reference specifying the name of the
dynamic link library (DLL) that contains the procedure.

procedure Text specifying the name of the function in the DLL in
Formula One. The function name is case dependent in
Formula One.

type_text Text specifying the data type of the return value and the
data types of all arguments to the DLL or code resource.
The first letter of type_text specifies the return value. The
data types you use for type_text are described in the
following table.

Chapter 14 A-Z Worksheet Function Reference 211
Remarks For declarations made in C, it is assumed that your compiler defaults to 8-byte
doubles, 2-byte short integers, and 4-byte long integers. In the Windows
programming environment, all pointers should be far pointers.

Pascal calling conventions are used for all functions called from DLLs. For most C
compilers, you must add the –Pascal keyword to the function declaration.

If the return value for your custom function uses a pass-by-reference data type, a null
pointer can be passed as the return value. The null pointer is interpreted as the
#NUM! error value.

For the F and G data types, a custom function can modify an allocated string buffer.
If the return value type code is F or G, the value returned by the function is ignored.
The list of function arguments is searched for the first data type that corresponds to
the return value type. The current contents of the allocated string buffer is taken for
the return value. 256 bytes is allocated for the argument; therefore, a function can
return a larger string than it receives.

You can use a single digit (n), with a value from 1 to 9, as the code for data_type.
The variable in the location pointed to by the nth argument is modified instead of the
return value; this process is referred to as modifying in place. The nth argument must
be a pass-by-reference data type. In addition, you must declare the function void. For
most C compilers, you can add the Void keyword to the function declaration.

Data Type Description Pass by C Declaration

A Logical (False = 0, True = 1) Value short int

B IEEE 8-byte floating point
number

Value double

C Null-terminated string (255
characters maximum

Reference char*

D Byte-counted string (first byte
contains string length; 255
characters maximum)

Reference unsigned char*

E IEEE 8-byte floating point
number

Reference double*

F Null-terminated string (255
characters maximum)

Reference char*

G Byte-counted string (first byte
contains string length; 255
characters maximum)

Reference unsigned char *

H Unsigned 2-byte integer Value unsigned short int

I Signed 2-byte integer Value short int

J Signed 4-byte integer Value long int

L Logical (False = 0, True = 1) Reference short int *

M Signed 2-byte integer Reference short int *

N Signed 4-byte integer Reference long int *

212 Formula One ActiveX User’s Guide
Examples Syntax 1

The following macro formula registers the GetTickCount function from 32-bit
Microsoft Windows. GetTickCount returns the number of milliseconds that have
elapsed since Microsoft Windows was started.

REGISTER.ID("Kernel32","GetTickCount","J")

Assuming that this REGISTER.ID function is in cell A5, after your macro registers
GetTickCount, you can use the CALL function to return the number of milliseconds
that have elapsed since Windows was started:

CALL(A5)

Syntax 2

On a worksheet, you can use the following CALL formula (syntax 2) to call the
GetTickCount function:

CALL("Kernel32","GetTickCount","J!")

The ! in the type_text argument forces Formula One to recalculate the CALL
function every time the worksheet recalculates. This updates the elapsed time
whenever the worksheet recalculates.

CEILING
Description Rounds a number up to the nearest multiple of a specified significance.

Syntax CEILING (number, significance)

Remarks Regardless of the sign of the number, the value is rounded up, away from zero. If
number is an exact multiple of significance, no rounding occurs.

If number or significance is non-numeric, the error #VALUE! is returned. When the
arguments have opposite signs, the error #NUM! is returned.

Examples This function returns 1.25:

CEILING(1.23459, .05)

This function returns 150:

CEILING(148.24, 2)

Parameter Description

number The value to round.

significance The multiple to which to round.

Chapter 14 A-Z Worksheet Function Reference 213
See Also EVEN
FLOOR
INT
ODD
ROUND
TRUNC

CHAR
Description Returns a character that corresponds to the supplied ASCII code.

Syntax CHAR (number)

Remarks The character and associated numeric code are defined by Windows in the ASCII
character set.

Examples This function returns F:

CHAR(70)

This function returns #:

CHAR(35)

See Also CODE

Parameter Description

number A value between 1 and 255 that specifies an ASCII character.

214 Formula One ActiveX User’s Guide
CHOOSE
Description Returns a value from a list of numbers based on the index number supplied.

Syntax CHOOSE (index, item_list)

Remarks Index can be a cell reference; index can also be a formula that returns any value from
1 to 29. If index is less than 1 or greater than the number of items in item_list,
#VALUE! is returned. If index is a fractional number, it is truncated to an integer.

Examples This function returns Q2:

CHOOSE(2,”Q1”, “Q2”, “Q3”, “Q4”)

This function returns the average of the contents of range A1:A10:

AVERAGE(CHOOSE(1, A1:A10, B1:B10, C1:C10))

See Also INDEX

Parameter Description

index A number that refers to an item in item_list.

item_list A list of numbers, formulas, or text separated by commas. This
argument can also be a range reference. You can specify as many as 29
items in the list.

Chapter 14 A-Z Worksheet Function Reference 215
CLEAN
Description Removes all nonprintable characters from the supplied text.

Syntax CLEAN (text)

Remarks Text that is imported from another environment may require this function.

Examples This function returns Payments Due because the character returned by CHAR (8) is
nonprintable:

CLEAN(“Payments “ & CHAR(8) & “Due”)

See Also CHAR
TRIM

CODE
Description Returns a numeric code representing the first character of the supplied string.

Syntax CODE (text)

Remarks The numeric code and associated string are defined in your computer’s character set.

Examples This function returns 65:

CODE(“A”)

This function returns 98:

CODE(“b”)

See Also CHAR

Parameter Description

text Any worksheet information.

Parameter Description

text Any string.

216 Formula One ActiveX User’s Guide
COLUMN
Description Returns the column number of the supplied reference.

Syntax COLUMN (reference)

Examples This function returns 2:

COLUMN(B3)

This function returns 4 if the function is entered in cell D2:

COLUMN()

See Also COLUMNS
ROW

COLUMNS
Description Returns the number of columns in a range reference.

Syntax COLUMNS (range)

Example This function returns 4:

COLUMNS(A1:D5)

See Also COLUMN
ROWS

Parameter Description

reference A reference to a cell or range. Omitting the argument returns the
number of the column in which COLUMN is placed.

Parameter Description

range A reference to a range of cells.

Chapter 14 A-Z Worksheet Function Reference 217
CONCATENATE
Description Joins several text items into one item.

Syntax CONCATENATE (text1, text2,)

Remarks The “&” operator can be used instead of CONCATENATE to join text items.

Examples The following example returns “Sale Price” it is the same as typing “Sale”& “ ” &
“Price”:

CONCATENATE ("Sale ", "Price")

Suppose in an inventory worksheet, C2 contains “extruder1”, C5 contains “gaskets”,
and C8 contains the number 15. The following example returns “Inventory currently
holds 15 gaskets for extruder1.”:

CONCATENATE ("Inventory currently holds ", C8, " ", C5," for ", C2)

See Also COLUMN
ROWS

COS
Description Returns the cosine of an angle.

Syntax COS (number)

Examples This function returns .126:

COS(1.444)

This function returns .28:

COS(5)

Parameter Description

text1, text2, ... Up to 30 text items to be joined into a single text item. The text
items can be strings, numbers, or single-cell references.

Parameter Description

number The angle in radians. If the angle is in degrees, convert the
angle to radians by multiplying the angle by PI()/180.

218 Formula One ActiveX User’s Guide
See Also ACOS
ASINH
ATANH
COSH
PI

COSH
Description Returns the hyperbolic cosine of a number.

Syntax COSH (number)

Examples This function returns 4.14:

COSH(2.10)

This function returns 1.03:

COSH(.24)

See Also ASINH
ATANH
COS

COUNT
Description Returns the number of values in the supplied list.

Syntax COUNT (value_list)

Remarks COUNT only numerates numbers or numerical values such as logical values, dates,
or text representations of dates. If you supply a range, only numbers and numerical
values in the range are counted. Empty cells, logical values, text, and error values in
the range are ignored.

Parameter Description

number Any number.

Parameter Description

value_list A list of values. The list can contain as many as 30 values.

Chapter 14 A-Z Worksheet Function Reference 219
Examples This function returns 2:

COUNT(5, 6, “Q2”)

This function returns 3:

COUNT(“03/06/94”, “06/21/94”, “10/19/94”)

See Also AVERAGE
COUNTA
SUM

COUNTA
Description Returns the number of nonblank values in the supplied list.

Syntax COUNTA (expression_list)

Remarks COUNTA returns the number of cells that contain data in a range. Null values (“ ”)
are counted, but references to empty cells are ignored.

Examples This function returns 4:

COUNTA(32, 45, "Earnings", "")

This function returns 0 when the specified range contains empty cells:

COUNTA(C38:C40)

See Also AVERAGE
COUNT
PRODUCT
SUM

Parameter Description

expression_list A list of expressions. As many as 30 expressions can be
included in the list.

220 Formula One ActiveX User’s Guide
COUNTIF
Description Returns the number of cells within a range which meet the given criteria.

Syntax COUNTIF (range, criteria)

See Also AVERAGE
COUNTA
SUM
SUMIF

DATE
Description Returns the serial number of the supplied date.

Syntax DATE (year, month, day)

Examples This function returns 34506:

DATE(94, 6, 21)

This function returns 36225:

DATE(99, 3, 6)

See Also DATEVALUE
DAY
MONTH
NOW
TIMEVALUE
TODAY

Parameter Description

range Range of cells you want to count.

criteria Number, expression, or text that defines which cells are counted.

Parameter Description

year A number from 1900 to 2078. If year is between 1920 to 2019, you
can specify two digits to represent the year; otherwise specify all
four digits.

month A number representing the month (for example, 12 represents
December). If a number greater than 12 is supplied, the number is
added to the first month of the specified year.

day A number representing the day of the month. If the number you
specify for day exceeds the number of days in that month, the
number is added to the first day of the specified month.

Chapter 14 A-Z Worksheet Function Reference 221
YEAR

DATEVALUE
Description Returns the serial number of a date supplied as a text string.

Syntax DATEVALUE (text)

Examples This function returns 34399:

DATEVALUE("3/6/94")

This function returns 35058:

DATEVALUE("12/25/95")

See Also NOW
TIMEVALUE
TODAY

DAY
Description Returns the day of the month that corresponds to the date represented by the supplied

number.

Syntax DAY (serial_number)

Examples This function returns 6:

DAY(34399)

This function returns 21:

DAY("06-21-94")

Parameter Description

text A date in text format between January 1, 1900, and December 31,
2078. If you omit the year, the current year is used.

Parameter Description

serial_number A date represented as a serial number or as text (for example,
06-21-94 or 21-Jun-94).

222 Formula One ActiveX User’s Guide
See Also NOW
HOUR
MINUTE
MONTH
SECOND
TODAY
WEEKDAY
YEAR

DAYS360
Description Returns the number of days between two dates based on a 360-day year (twelve 30-

day months). Use this function to help compute payments if your accounting system
is based on twelve 30-day months.

Syntax DAYS360 (start_date, end_date, [method])

Remarks start_date and end_date can be text strings using numbers to represent the month,
day, and year (for example, “1/30/93” or “1-30-93”), or they can be serial numbers
representing the dates.

If start_date occurs after end_date, DAYS360 returns a negative number.

If method is set to False and start_date is the 31st of a month, it becomes equal to the
30th of the same month. If end_date is the 31st of a month and start_date is less than
the 30th of a month, the ending date becomes equal to the 1st of the next month,
otherwise the ending date becomes equal to the 30th of the same month.

If method is set to True, start_dates or end_dates which occur on the 31st of a month
become equal to the 30th of the same month.

Note To determine the number of days between two dates in a normal year, you can
use normal subtraction--for example, “12/31/93”-“1/1/93” equals 364.

Example DAYS360("1/30/93", "2/1/93") equals 1

Parameter Description

start_date, end_date The two dates between which you want to know the number of
days.

method A logical value that specifies whether the European or US method
should be used in the calculation. If False (or omitted), the US
(NASD) method is used. If True, the European method is used.
The default is based on the local translation. It should be correct
for your location.

Chapter 14 A-Z Worksheet Function Reference 223
DB
Description Returns the real depreciation of an asset for a specific period of time using the fixed-

declining balance method.

Syntax DB (cost, salvage, life, period [, months])

Example This function returns 1451.52:

DB(10000, 1000, 7, 3)

See Also DDB
SLN
SYD
VDB

DBCS
Description In DBCS (Far-East) systems, this functions returns a copy of text in which the single-

byte characters are converted to double-byte characters, if possible. Characters that
cannot be converted are left unchanged.

Syntax ASC (text)

Remarks On non-DBCS systems, the text returns unchanged.

See Also ASC

Parameter Description

cost The initial cost of the asset.

salvage The salvage value of the asset.

life The number of periods in the useful life of the asset.

period The period for which to calculate the depreciation. The time units
used to determine period and life must match.

months The number of months in the first year of the item’s life. Omitting
this argument assumes there are 12 months in the first year.

Parameter Description

text Text converted from single-byte characters to double-byte
characters.

224 Formula One ActiveX User’s Guide
DDB
Description Returns the depreciation of an asset for a specific period of time using the double-

declining balance method or a declining balance factor you supply.

Syntax DDB (cost, salvage, life, period [, factor])

Remarks The double-declining balance method uses an accelerated rate where the highest
depreciation occurs in the first period, decreasing in successive periods.

All arguments for this function must be positive numbers.

Example This function returns 1457.73:

DDB(10000,1000, 7, 3)

See Also DB
SLN
SYD
VDB

DOLLAR
Description Returns the specified number as text, using the local currency format and the

supplied precision.

Syntax DOLLAR (number [, precision])

Parameter Description

cost The initial cost of the asset.

salvage The salvage value of the asset.

life The number of periods in the useful life of the asset.

period The period for which to calculate the depreciation. The time units
used to determine period and life must match.

factor The rate at which the balance declines. Omitting this argument
assumes a default factor of 2, the double-declining balance factor.

Parameter Description

number A number, a formula that evaluates to a number, or a reference to
a cell that contains a number.

precision A value representing the number of decimal places to the right of
the decimal point. Omitting this argument assumes two decimal
places.

Chapter 14 A-Z Worksheet Function Reference 225
Note “Local” currency refers to the currency format for the current system, i.e., the
one specified in Regional Settings in Control Panel

Remarks Dollar will return the specified number format as text using currency format for the
current system. If you wish to always convert to the US Dollar format, regardless of
the language of your system, then use the USDOLLAR worksheet function.

US Example When using a US setting in Windows, this function returns $1023.79:

DOLLAR(1023.789)

This function returns $500:

DOLLAR(495.301, –2)

UK Example When using a British setting in Windows, this function returns £1023.8:

DOLLAR(1023.789)

This function returns £500:

DOLLAR(495.301, -2)

German Example When using a German setting in Windows, this function returns 1023,8 DM

DOLLAR(1023.789)

This function returns 500 DM:

DOLLAR(495.301, –2)

See Also FIXED
TEXT
VALUE
USDOLLAR

ERROR.TYPE
Description Returns a number corresponding to an error.

Syntax ERROR.TYPE (error_ref)

Parameter Description

error_ref A cell reference.

226 Formula One ActiveX User’s Guide
Remarks The following error text or numbers can be returned by this function.

Example This function returns 2 if the formula in cell A1 attempts to divide by zero:

ERROR.TYPE(A1)

See Also ISERR
ISERROR

EVEN
Description Rounds the specified number up to the nearest even integer.

Syntax EVEN (number)

Examples This function returns 4:

EVEN(2.5)

This function returns 2032:

EVEN(2030.45)

See Also CEILING
FLOOR
INT
ODD
ROUND
TRUNC

Number Description

1 #NULL!

2 #DIV/0!

3 #VALUE!

4 #REF!

5 #NAME?

6 #NUM!

7 #N/A

#N/A Other

Parameter Description

number Any number, a formula that evaluates to a number, or a reference
to a cell that contains a number.

Chapter 14 A-Z Worksheet Function Reference 227
EXACT
Description Compares two expressions for identical, case-sensitive matches. True is returned if

the expressions are identical; False is returned if they are not.

Syntax EXACT (expression1, expression2)

Examples This function returns True:

EXACT("Match", "Match")

This function returns False:

EXACT("Match", "match")

See Also LEN
SEARCH

EXP
Description Returns e raised to the specified power. The constant e is 2.71828182845904 (the

base of the natural logarithm).

Syntax EXP (number)

Examples This function returns 12.18:

EXP(2.5)

This function returns 20.09:

EXP(3)

See Also LN
LOG

Parameter Description

expression1 Any text.

expression2 Any text.

Parameter Description

number Any number as the exponent.

228 Formula One ActiveX User’s Guide
FACT
Description Returns the factorial of a specified number.

Syntax FACT (number)

Examples This function returns 2:

FACT(2.5)

This function returns 720:

FACT(6)

See Also PRODUCT

FALSE
Description Returns the logical value False. This function always requires the trailing

parentheses.

Syntax FALSE ()

See Also TRUE

FIND
Description Searches for a string of text within another text string and returns the character

position at which the search string first occurs.

Syntax FIND (search_text, text [, start_position])

Parameter Description

number Any non-negative integer. If you supply a real number, FACT
truncates the number to an integer before calculation.

Parameter Description

search_text The text to find. If you specify an empty string (""), FIND matches
the first character in text.

text The text to be searched.

start_position The character position in text where the search begins. The first
character in text is character number 1. When you omit this
argument, the default starting position is character number 1.

Chapter 14 A-Z Worksheet Function Reference 229
Remarks FIND is case-sensitive. You cannot use wildcard characters in the search_text.

Examples This function returns 12:

FIND("time", "There’s no time like the present")

This function returns 19:

FIND("4", "Aisle 4, Part 123-4-11", 9)

See Also EXACT
LEN
MID
SEARCH

FINDB
Description Searches for a string of text within another text string and returns the byte position at

which the search string first occurs.

Syntax FINDB (search_text, text [, start_position])

Remarks FINDB is case-sensitive. You cannot use wildcard characters in the search_text.

start_position and return value are expressed in bytes, so these values might differ on
DBCS systems. On non-DBCS systems, these functions are identical, but FINDB
should only be used in special applications that require distinctions between single-
byte and double-byte characters.

Examples This function returns 12:

FINDB("time", "Theres no time like the present")

This function returns 19:

FINDB("4", "Aisle 4, Part 123-4-11", 9)

Parameter Description

search_text The text to find. If you specify an empty string (""), FINDB
matches the first byte in text.

text The text to be searched.

start_position The byte position in text where the search begins. The first byte
in text is byte number 1. When you omit this argument, the
default starting position is byte number 1.

230 Formula One ActiveX User’s Guide
FIXED
Description Rounds a number to the supplied precision, formats the number in decimal format,

and returns the result as text.

Syntax FIXED (number [, precision][, no_commas])

Examples This function returns 2,000.500:

FIXED(2000.5, 3)

This function returns 2010:

FIXED(2009.5, –1, 1)

See Also DOLLAR
ROUND
TEXT
VALUE

FLOOR
Description Rounds a number down to the nearest multiple of a specified significance.

Syntax FLOOR (number, significance)

Remarks Regardless of the sign of the number, the value is rounded down, toward zero. If
number is an exact multiple of significance, no rounding occurs.

If number or significance is non-numeric, #NAME? is returned. When the arguments
have opposite signs, #NUM! is returned.

Parameter Description

number Any number.

precision The number of digits that appear to the right of the decimal place.
When this argument is omitted, a default precision of 2 is used. If
you specify negative precision, number is rounded to the left of the
decimal point. You can specify a precision as great as 127 digits.

no_commas Determines if thousands separators (commas) are used in the result.
Use 1 to exclude commas in the result. If no_commas is 0 or the
argument is omitted, thousands separators are included (for
example, 1,000.00).

Parameter Description

number The value to round.

significance The multiple to which to round.

Chapter 14 A-Z Worksheet Function Reference 231
Examples This function returns 1.2:

FLOOR(1.23459, .05)

This function returns –148:

FLOOR(–148.24, –2)

See Also CEILING
EVEN
INT
ODD
ROUND
TRUNC

FV
Description Returns the future value of an annuity based on regular payments and a fixed interest

rate.

Syntax FV (interest, nper, payment [, pv] [, type])

Remarks The units used for interest must match those used for nper. For example, if the
annuity has an 8 percent annual interest rate over a period of 5 years, specify 8
percent/12 for interest and 5*12 for nper.

Cash paid out, such as a payment, is shown as a negative number. Cash received,
such as a dividend check, is shown as a positive number.

Examples This function returns 4,774.55:

FV(5%, 8, –500)

This function returns 531,550.86:

FV(10%/12, 240, –700, 1)

Parameter Description

interest The fixed interest rate.

nper The number of payments in an annuity.

payment The fixed payment made each period.

pv The present value, or the lump sum amount, the annuity is
currently worth. When you omit this argument, a present value of
0 is assumed.

type Indicates when payments are due. Use 0 if payments are due at the
end of the period or 1 if payments are due at the beginning of the
period. When you omit this argument, 0 is assumed.

232 Formula One ActiveX User’s Guide
See Also IPMT
NPER
PMT
PPMT
PV
RATE

HLOOKUP
Description Searches the top row of a table for a value and returns the contents of a cell in that

table that corresponds to the location of the search value.

Syntax HLOOKUP (search_item, search_range, row_index)

Remarks HLOOKUP compares the information in the top row of search_range to the
supplied search_item. When a match is found, information located in the same
column and supplied row (row_index) is returned.

If search_item cannot be found in the top row of search_range, the largest value that
is less than search_item is used. When search_item is less than the smallest value in
the first row of the search_range, the error #REF! is returned.

Examples The following examples use this worksheet.

Parameter Description

search_item A value, text string, or reference to a cell containing a value that
is matched against data in the top row of search_range.

search_range A reference to the range (table) to be searched. The cells in the
first row of search_range can contain numbers, text, or logical
values. The contents of the first row must be in ascending order
(for example, –2, –1, 0, 2...A through Z, False, True). Text
searches are not case-sensitive.

row_index The row in search_range from which the matching value is
returned. row_index can be a number from 1 to the number of
rows in search_range. If row_index is less than 1, the error
#VALUE! is returned. When row_index is greater than the
number of rows in the table, the error #REF! is returned.

Chapter 14 A-Z Worksheet Function Reference 233
This function returns 22.63:

HLOOKUP("Northeast", B1:E5, 3)

This function returns #REF!:

HLOOKUP("Pacific", B1:E5, 7)

See Also INDEX
LOOKUP
MATCH
VLOOKUP

HOUR
Description Returns the hour component of the specified time in 24-hour format.

Syntax HOUR (serial_number)

Remarks The result is an integer ranging from 0 (12:00 AM) to 23 (11:00 PM).

Examples This function returns 9:

HOUR(34259.4)

This function returns 23:

HOUR(34619.976)

See Also DAY
MINUTE
MONTH
NOW
SECOND
WEEKDAY
YEAR

Parameter Description

serial_number The time as a serial number. The decimal portion of the number
represents time as a fraction of the day.

234 Formula One ActiveX User’s Guide
IF
Description Tests the condition and returns the specified value.

Syntax IF (condition, true_value, false_value)

Example This function returns Greater if the contents of A1 is greater than 10 and Less if the
contents of A1 is less than 10:

IF(A1>10, "Greater", "Less")

See Also AND
FALSE
NOT
OR
TRUE

INDEX
Description Returns the contents of a cell from a specified range.

Syntax INDEX (reference [, row] [, column] [, range_number])

Parameter Description

condition Any logical expression.

true_value The value to be returned if condition evaluates to True.

false_value The value to be returned if condition evaluates to False.

Parameter Description

reference A reference to one or more ranges. If reference specifies more than
one range, separate each reference with a comma and enclose
reference in parentheses. For example, (A1:C6, B7:E14, F4). If
each range in reference contains only one row or column, you can
omit the row or column argument. For example, if reference is
A1:A15, you can omit the column argument INDEX(A1:A15, 3,,
1).

row The row number in reference from which to return data.

column Column number in reference from which to return data.

range_number Specifies the range from which data is returned if reference
contains more than one range. For example, if reference is
(A1:A10, B1:B5, D14:E23), A1:A10 is range_number 1, B1:B5 is
range_number 2, and D14:E23 is range_number 3.

Chapter 14 A-Z Worksheet Function Reference 235
Remarks If row, column, and range_number do not point to a cell within reference, #REF! is
returned. If row and column are omitted, INDEX returns the range in reference
specified by range_number.

Examples The following examples use this worksheet.

This function returns $1415.35:

INDEX(A2:B6, 2, 2)

This function returns $1634.58:

INDEX((A2:B6, D2:E6), 4, 2, 2)

See Also CHOOSE
HLOOKUP
LOOKUP
MATCH
VLOOKUP

INDIRECT
Description Returns the contents of the cell referenced by the specified cell.

Syntax INDIRECT (ref_text [, a1])

Example This function returns the contents of the cell that C1 references. If C1 contains “D1,”
then the contents of D1is returned:

INDIRECT(C1)

Parameter Description

ref_text A reference to a cell that references a third cell. If ref_text is not a
valid reference, the error #REF! is returned.

a1 The reference format. This argument must be TRUE() to represent
an A1 reference format; Formula One does not support the R1C1
reference format.

236 Formula One ActiveX User’s Guide
See Also OFFSET

INT
Description Rounds the supplied number down to the nearest integer.

Syntax INT (number)

Examples This function returns 10:

INT(10.99)

This function returns –11:

INT(–10.99)

See Also CEILING
FLOOR
MOD
ROUND
TRUNC

IPMT
Description Returns the interest payment of an annuity for a given period, based on regular

payments and a fixed periodic interest rate.

Syntax IPMT (interest, per, nper, pv, [fv], [type])

Parameter Description

number Any real number.

Parameter Description

interest The fixed periodic interest rate.

per The period for which to return the interest payment. This number
must be between 1 and nper.

nper The number of payments.

pv The present value, or the lump sum amount the annuity is
currently worth.

fv The future value, or the value after all payments are made. If this
argument is omitted, the future value is assumed to be 0.

type Indicates when payments are due. Use 0 if payments are due at
the end of the period or 1 if payments are due at the beginning of
the period. When you omit this argument, 0 is assumed.

Chapter 14 A-Z Worksheet Function Reference 237
Remarks The units used for interest must match those used for nper. For example, if the
annuity has an 8 percent annual interest rate over a period of 5 years, specify 8
percent/12 for interest and 5*12 for nper.

Cash paid out, such as a payment, is shown as a negative number. Cash received,
such as a dividend check, is shown as a positive number.

Examples This function returns –117.87:

IPMT(8%/12, 2, 48, 18000)

This function returns –117.09:

IPMT(8%/12, 2, 48, 18000, 0, 1)

See Also FV
PMT
PPMT
RATE

IRR
Description Returns internal rate of return for a series of periodic cash flows.

Syntax IRR (cash_flow [, guess])

Remarks The internal rate of return is the interest rate received for an investment consisting of
payments (specified by negative numbers) and investments (specified by positive
numbers).

IRR is calculated iteratively, cycling through the calculation until the result is
accurate to .00001 percent. If the result cannot be found after 20 iterations, #NUM!
is returned. When this occurs, supply a different value for guess.

Parameter Description

cash_flow A reference to a range that contains values for which to calculate the
internal rate of return. The values must contain at least one positive
and one negative value. During calculation, IRR uses the order in
which the values appear to determine the order of the cash flow.
Text, logical values, and empty cells in the range are ignored.

guess The estimate of the internal rate of return. If no argument is supplied,
a rate of return of 10 percent is assumed.

238 Formula One ActiveX User’s Guide
Examples The following examples use this worksheet.

This function returns 3.72 percent:

IRR(B1:B6)

This function returns –49.26 percent:

IRR(B1:B3, –20%)

See Also MIRR
NPV
RATE

ISBLANK
Description Determines if the specified cell is blank.

Syntax ISBLANK (reference)

Remarks If the referenced cell is blank, True is returned. False is returned if the cell is not
blank.

Example This function returns True if A1 is a blank cell:

ISBLANK(A1)

See Also ISERR
ISERROR
ISLOGICAL
ISNA
ISNONTEXT
ISNUMBER
ISREF
ISTEXT

Parameter Description

reference A reference to any cell.

Chapter 14 A-Z Worksheet Function Reference 239
ISERR
Description Determines if the specified expression returns an error value.

Syntax ISERR (expression)

Remarks If the expression returns any error except #N/A!, True is returned. Otherwise, False is
returned.

Example This function returns True if A1 contains a formula that returns an error such as
#NUM!:

ISERR(A1)

See Also ISBLANK
ISERROR
ISLOGICAL
ISNA
ISNONTEXT
ISNUMBER
ISREF
ISTEXT

ISERROR
Description Determines if the specified expression returns an error value.

Syntax ISERROR (expression)

Remarks If expression returns any error value, such as #N/A!, #VALUE!, #REF!, #DIV/0!,
#NUM!, #NAME?, or #NULL!, True is returned. Otherwise, False is returned.

Examples This function returns True:

ISERROR(4/0)

This function returns False if A1 contains a formula that does not return an error.

ISERROR(A1)

See Also ISBLANK

Parameter Description

expression Any expression.

Parameter Description

expression Any expression.

240 Formula One ActiveX User’s Guide
ISERR
ISLOGICAL
ISNA
ISNONTEXT
ISNUMBER
ISREF
ISTEXT

ISLOGICAL
Description Determines if the specified expression returns a logical value.

Syntax ISLOGICAL (expression)

Remarks If expression returns a logical value, True is returned. Otherwise, False is returned.

Example This function returns True because ISBLANK returns a logical value:

ISLOGICAL(ISBLANK(A1))

See Also ISBLANK
ISERR
ISERROR
ISNA
ISNONTEXT
ISNUMBER
ISREF
ISTEXT

ISNA
Description Determines if the specified expression returns the value not available error.

Syntax ISNA (expression)

Remarks If expression returns the #N/A! error, True is returned. Otherwise, False is returned.

Example This function returns True if cell A1 contains the NA () function or returns the error
value #N/A!:

Parameter Description

expression Any expression.

Parameter Description

expression Any expression.

Chapter 14 A-Z Worksheet Function Reference 241
ISNA(A1)

See Also ISBLANK
ISERR
ISERROR
ISLOGICAL
ISNONTEXT
ISNUMBER
ISREF
ISTEXT

ISNONTEXT
Description Determines if the specified expression is not text.

Syntax ISNONTEXT (expression)

Remarks If expression returns any value that is not text, True is returned. Otherwise, False is
returned.

Examples This function returns True if cell F3 contains a number or is a blank cell:

ISNONTEXT(F3)

This function returns False:

ISNONTEXT("text")

See Also ISBLANK
ISERR
ISERROR
ISLOGICAL
ISNA
ISNUMBER
ISREF
ISTEXT

Parameter Description

expression Any expression.

242 Formula One ActiveX User’s Guide
ISNUMBER
Description Determines if the specified expression is a number.

Syntax ISNUMBER (expression)

Remarks If expression returns a number, True is returned. Otherwise, False is returned. If
expression returns a number represented as text (for example, “12”), False is
returned.

Examples This function returns True:

ISNUMBER(123.45)

This function returns False:

ISNUMBER("123")

See Also ISBLANK
ISERR
ISERROR
ISLOGICAL
ISNA
ISNONTEXT
ISREF
ISTEXT

ISREF
Description Determines if the specified expression is a range reference.

Syntax ISREF (expression)

Remarks If expression returns a range reference, True is returned. Otherwise, False is returned.

Example This function returns True:

ISREF(A3)

See Also ISBLANK
ISERR

Parameter Description

expression Any expression.

Parameter Description

expression Any expression.

Chapter 14 A-Z Worksheet Function Reference 243
ISERROR
ISLOGICAL
ISNA
ISNONTEXT
ISTEXT

ISTEXT
Description Determines if the specified expression is text.

Syntax ISTEXT (expression)

Remarks If expression returns text, True is returned. Otherwise, False is returned.

Example This function returns True:

ISTEXT("2nd Quarter")

See Also ISBLANK
ISERR
ISERROR
ISLOGICAL
ISNA
ISNONTEXT
ISNUMBER
ISREF

LEFT
Description Returns the leftmost characters from the specified text string.

Syntax LEFT (text [, num_chars])

Examples This function returns 2:

LEFT("2nd Quarter")

Parameter Description

expression Any expression.

Parameter Description

text Any text string.

num_chars The number of characters to return. This value must be greater than or
equal to zero. If num_chars is greater than the number of characters in
text, the entire string is returned. Omitting this argument assumes a value
of 1.

244 Formula One ActiveX User’s Guide
This function returns 2nd:

LEFT("2nd Quarter", 3)

See Also MID
RIGHT

LEFTB
Description Returns the leftmost byte from the specified text string.

Syntax LEFTB (text [, num_bytes])

Remarks num_bytes and return value are expressed in bytes, so these values might differ on
DBCS systems. On non-DBCS systems, these functions are identical, but LEFTB
should only be used in special applications that require distinctions between single-
byte and double-byte characters.

Examples This function returns 2:

LEFTB("2nd Quarter")

This function returns 2nd:

LEFTB("2nd Quarter", 3)

LEN
Description Returns the number of characters in the supplied text string.

Syntax LEN (text)

Examples This function returns 11:

LEN(“3rd Quarter”)

Parameter Description

text Any text string.

num_bytes The number of bytes to return. This value must be greater than or
equal to zero. If num_bytes is greater than the number of bytes in text,
the entire string is returned. Omitting this argument assumes a value
of 1.

Parameter Description

text Any text string. Spaces in the string are counted as characters.

Chapter 14 A-Z Worksheet Function Reference 245
This function returns 3:

LEN(“1-3”)

See Also EXACT
SEARCH

LENB
Description Returns the number of bytes in the supplied text string.

Syntax LENB (text)

Remarks text and return value are expressed in bytes, so these values might differ on DBCS
systems. On non-DBCS systems, these functions are identical, but LENB should
only be used in special applications that require distinctions between single-byte and
double-byte characters.

Examples This function returns 11:

LENB("3rd Quarter")

This function returns 3:

LENB("1-3")

LN
Description Returns the natural logarithm (based on the constant e) of a number.

Syntax LN (number)

Remarks LN is the inverse of the EXP function.

Examples This function returns 2.50:

LN(12.18)

This function returns 3.00:

LN(20.09)

Parameter Description

text Any text string. Spaces in the string are counted as bytes.

Parameter Description

number Any positive real number.

246 Formula One ActiveX User’s Guide
See Also EXP
LOG
LOG10

LOG
Description Returns the logarithm of a number to the specified base.

Syntax LOG (number [, base])

Examples This function returns 0:

LOG(1)

This function returns 1:

LOG(10)

See Also EXP
LN
LOG10

LOG10
Description Returns the base-10 logarithm of a number.

Syntax LOG10 (number)

Examples This function returns 2.41:

LOG10(260)

This function returns 2:

LOG10(100)

See Also EXP
LN

Parameter Description

number Any positive real number.

base The base of the logarithm. Omitting this argument assumes a base of 10.

Parameter Description

number Any positive real number.

Chapter 14 A-Z Worksheet Function Reference 247
LOG

LOOKUP
Description Searches for a value in one range and returns the contents of the corresponding

position in a second range.

Syntax LOOKUP (lookup_value, lookup_range, result_range)

Remarks If lookup_value does not have an exact match in lookup_range, the largest value that
is less than or equal to lookup_value is found and the corresponding position in
result_range is returned. When lookup_value is smaller than the data in
lookup_range, #N/A is returned.

Examples The following examples use this worksheet.

This function returns Detroit:

LOOKUP("North", A2:A7, B2:B7)

This function returns #N/A:

LOOKUP(“Alabama”, A2:A7, B2:B7)

See Also HLOOKUP
INDEX
VLOOKUP

Parameter Description

lookup_value The value for which to search in the first range.

lookup_range The first range to search and contains only one row or one column.
The range can contain numbers, text, or logical values. To search
lookup_range correctly, the expressions in the range must be placed
in ascending order (for example, –2, –1, 0, 1, 2...A through Z,
False, True). The search is not case-sensitive.

result_range A range of one row or one column that is the same size as
lookup_range.

248 Formula One ActiveX User’s Guide
LOWER
Description Changes the characters in the specified string to lowercase characters. Numeric

characters in the string are not changed.

Syntax LOWER (text)

Examples This function returns 3rd quarter:

LOWER("3rd Quarter")

This function returns john doe:

LOWER("JOHN DOE")

See Also PROPER
UPPER

Parameter Description

text Any string.

Chapter 14 A-Z Worksheet Function Reference 249
MATCH
Description A specified value is compared against values in a range. The position of the matching

value in the search range is returned.

Syntax MATCH (lookup_value, lookup_range, comparison)

Remarks When using comparison method 0 and lookup_value is text, lookup_value can
contain wildcard characters. The wildcard characters are * (asterisk), which matches
any sequence of characters, and ? (question mark), which matches any single
character.

When no match is found for lookup_value, #N/A is returned.

Examples The following examples use this worksheet.

Parameter Description

lookup_value The value against which to compare. It can be a number, text, or
logical value or a reference to a cell that contains one of those
values.

lookup_range The range to search and contains only one row or one column. The
range can contain numbers, text, or logical values.

comparison A number that represents the type of comparison to be made
between lookup_value and the values in lookup_range. When you
omit this argument, comparison method 1 is assumed.

When comparison is 1, the largest value that is less than or equal
to lookup_value is matched. When using this comparison method,
the values in lookup_range must be in ascending order (for
example, ...–2, –1, 0, 1, 2..., A through Z, False, True).

When comparison is 0, the first value that is equal to lookup_value
is matched. When using this comparison method, the values in
lookup_range can be in any order.

When comparison is –1, the smallest value that is greater than or
equal to lookup_value is matched. When using this comparison
method, the values in lookup_range must be in descending order
(for example, True, False, Z through A, ...2, 1, 0, –1, –2...).

250 Formula One ActiveX User’s Guide
This function returns 5:

MATCH(7600, B2:B7,1)

This function returns 2:

MATCH("D*", A2:A7,0)

See Also HLOOKUP
INDEX
LOOKUP
VLOOKUP

MAX
Description Returns the largest value in the specified list of numbers.

Syntax MAX (number_list)

Examples This function returns 500:

MAX(50, 100, 150, 500, 200)

This function returns the largest value in the range:

MAX(A1:F12)

See Also AVERAGE
MIN

Parameter Description

number_list A list of as many as 30 numbers, separated by commas.

The list can contain numbers, logical values, text representations of
numbers, or a reference to a range containing those values.

Error values or text that cannot be translated into numbers return
errors.

If a range reference is included in the list, text, logical expressions,
and empty cells in the range are ignored.

If there are no numbers in the list, 0 is returned.

Chapter 14 A-Z Worksheet Function Reference 251
MID
Description Returns the specified number of characters from a text string, beginning with the

specified starting position.

Syntax MID (text, start_position, num_chars)

Remarks If start_position plus the number of characters in num_chars exceeds the length of
text, the characters from start_position to the end of text are returned.

Examples This function returns Expenses:

MID("Travel Expenses", 8, 8)

This function returns 45:

MID("Part #45-7234", 7, 2)

See Also CODE
FIND
LEFT
RIGHT
SEARCH

Parameter Description

text The string from which to return characters.

start_position The position of the first character to return from text.

If start_position is 1, the first character in text is returned.

If start_position is greater than the number of characters in
text, an empty string ("") is returned.

If start_position is less than 1, #VALUE! is returned.

num_chars The number of characters to return. If num_chars is negative,
#VALUE! is returned.

252 Formula One ActiveX User’s Guide
MIDB
Description Returns the specified number of bytes from a text string, beginning with the specified

starting position.

Syntax MIDB (text, start_position, num_bytes)

Remarks If start_position plus the number of bytes in num_bytes exceeds the length of text,
the bytes from start_position to the end of text are returned.

start_position, num_bytes, and return value are expressed in bytes, so these values
might differ on DBCS systems. On non-DBCS systems, these functions are identical,
but MIDB should only be used in special applications that require distinctions
between single-byte and double-byte characters.

Examples This function returns Expenses:

MIDB("Travel Expenses", 8, 8)

This function returns 45:

MIDB("Part #45-7234", 7, 2)

Parameter Description

text The string from which to return bytes.

start_position The position of the first byte to return from text.

If start_position is 1, the first byte in text is returned.

If start_position is greater than the number of bytes in text, an
empty string ("") is returned.

If start_position is less than 1, #VALUE! is returned.

num_bytes The number of bytes to return. If num_bytes is negative, #VALUE!
is returned.

Chapter 14 A-Z Worksheet Function Reference 253
MIN
Description Returns the smallest value in the specified list of numbers.

Syntax MIN (number_list)

Examples This function returns 50:

MIN(50, 100, 150, 500, 200)

This function returns the smallest value in the range:

MIN(A1:F12)

See Also AVERAGE
MAX

MINUTE
Description Returns the minute that corresponds to the supplied date.

Syntax MINUTE (serial_number)

Remarks The result is an integer ranging from 0 to 59.

Examples This function returns 36:

MINUTE(34506.4)

This function returns 48:

MINUTE(34399.825)

Parameter Description

number_list A list of as many as 30 numbers, separated by commas. The list
can contain numbers, logical values, text representations of
numbers, or a reference to a range containing those values.

Error values or text that cannot be translated into numbers return
errors.

If a range reference is included in the list, text, logical
expressions, and empty cells in the range are ignored.

If there are no numbers in the list, 0 is returned.

Parameter Description

serial_number The time as a serial number. The decimal portion of the number
represents time as a fraction of the day.

254 Formula One ActiveX User’s Guide
See Also DAY
HOUR
MONTH
NOW
SECOND
WEEKDAY
YEAR

MIRR
Description Returns the modified internal rate of return for a series of periodic cash flows.

Syntax MIRR (cash_flows, finance_rate, reinvest_rate)

Remarks The modified internal rate of return considers the cost of the investment and the
interest received on the reinvestment of cash.

Examples The following examples use this worksheet.

This function returns 5.20 percent:

MIRR(B1:B6, 12%, 8%)

This function returns –40.93 percent:

MIRR(B1:B3, 12%, 8%)

Parameter Description

cash_flow A reference to a range that contains values for which to calculate
the modified internal rate of return. The values must contain at
least one positive and one negative value.

During calculation, MIRR uses the order in which the values
appear to determine the order of cash flow.

Values that represent cash received should be positive; negative
values represent cash paid.

Text, logical values, and empty cells in the range are ignored.

finance_rate The interest rate paid on money used in the cash flow.

reinvest_rate The interest rate received on money reinvested from the cash flow.

Chapter 14 A-Z Worksheet Function Reference 255
See Also IRR
NPV
RATE

MOD
Description Returns the remainder after dividing a number by a specified divisor.

Syntax MOD (number, divisor)

Examples This function returns 1:

MOD(–23, 3)

This function returns –2:

MOD(–23, –3)

See Also INT
ROUND
TRUNC

MONTH
Description Returns the month that corresponds to the supplied date.

Syntax MONTH (serial_number)

Remarks MONTH returns a number ranging from 1 (January) to 12 (December).

Examples This function returns 6:

MONTH("06-21-94")

This function returns 10:

MONTH(34626)

Parameter Description

number Any number.

divisor Any nonzero number. If divisor is 0, #DIV/0! is returned.

Parameter Description

serial_number The date as a serial number or as text (for example, 06-21-94
or 21-Jun-94).

256 Formula One ActiveX User’s Guide
See Also DAY
HOUR
MINUTE
NOW
SECOND
TODAY
WEEKDAY
YEAR

N
Description Tests the supplied value and returns the value if it is a number.

Syntax N (value)

Remarks Numbers are returned as numbers, serial numbers formatted as dates are returned as
serial numbers, and the logical function TRUE() is returned as 1. All other
expressions return 0.

Examples This function returns 32467:

N(32467)

This function returns 1 if A4 contains the logical function TRUE:

N(A4)

See Also T
VALUE

NA
Description Returns the error value #N/A, which represents “not available.”

Syntax NA ()

Remarks Use NA to mark cells that lack data without leaving them empty. Empty cells may
not be correctly represented in some calculations.

Although NA does not use arguments, you must supply the empty parentheses to
correctly reference the function.

See Also ISNA

Parameter Description

value A value or a reference to a cell containing a value to test.

Chapter 14 A-Z Worksheet Function Reference 257
NOT
Description Returns a logical value that is the opposite of its value.

Syntax NOT (logical)

Remarks If logical is false, NOT returns True. Conversely, if logical is true, NOT returns
False.

Examples This function returns False:

NOT(TRUE())

This function returns False:

NOT(MONTH("12/25/94") = 12)

See Also AND
IF
OR

NOW
Description Returns the current date and time as a serial number.

Syntax NOW ()

Remarks In a serial number, numbers to the left of the decimal point represent the date;
numbers to the right of the decimal point represent the time. The result of this
function changes only when a recalculation of the worksheet occurs.

See Also DATE
DAY
HOUR
MINUTE
MONTH
SECOND
TODAY
WEEKDAY
YEAR

Parameter Description

logical An expression that returns a logical value such as True or False.

258 Formula One ActiveX User’s Guide
NPER
Description Returns the number of periods of an investment based on regular periodic payments

and a fixed interest rate.

Syntax NPER (interest, pmt, pf [, fv] [, type])

Examples This function returns 36.67:

NPER(12%/12, –350, –300, 16000, 1)

This function returns 36.98:

NPER(1%, –350, –300, 16000)

See Also FV
IPMT
PMT
PPMT
PV
RATE

Parameter Description

interest The fixed interest rate.

pmt The fixed payment made each period. Generally, pmt includes the
principle and interest, not taxes or other fees.

pf The present value, the lump-sum amount that a series of future
payments is currently worth.

fv The future value, the balance to attain after the final payment.
Omitting this argument assumes a future balance of 0.

type Indicates when payments are due. Use 0 if payments are due at the
end of the period or 1 if payments are due at the beginning of the
period. When you omit this argument, 0 is assumed.

Chapter 14 A-Z Worksheet Function Reference 259
NPV
Description Returns the net present value of an investment based on a series of periodic payments

and a discount rate.

Syntax NPV (discount_rate, value_list)

Remarks The time span NPV uses for calculation begins one period before the first cash flow
date and ends when the last cash flow payment is made. This function is based on
future cash flows. When your first cash flow occurs at the beginning of the first
period, the first value must be added to the NPV result, not supplied as a value in
value_list.

Example This function returns 811.57:

NPV(8%, –12000, 3000, 3000, 3000, 7000)

See Also FV
IRR
PV

ODD
Description Rounds the specified number up to the nearest odd integer.

Syntax ODD (number)

Parameter Description

discount_rate The rate of discount for one period.

value_list A list of as many as 29 arguments or a reference to a range that
contains values that represent payments and income.

During calculation, NPV uses the order in which the values
appear to determine the order of cash flow.

Numbers, empty cells, and text representations of numbers are
included in the calculation. Errors and text that cannot be
translated into numbers are ignored.

If value_list is a range reference, only numeric data in the range
is included in the calculation. Other types of data in the range,
such as empty cells, logical values, text, and error values, are
ignored.

Parameter Description

number Any number, a formula that evaluates to a number, or a reference to a cell
that contains a number.

260 Formula One ActiveX User’s Guide
Examples This function returns 5:

ODD(3.5)

This function returns 7:

ODD(6)

See Also CEILING
EVEN
FLOOR
INT
ROUND
TRUNC

OFFSET
Description Returns the contents of a range that is offset from a starting point in the spreadsheet.

Syntax OFFSET (reference, rows, columns [, height] [, width])

Remarks OFFSET does not change the current selection in the worksheet. Because it returns a
reference, OFFSET can be used in any function that requires or uses a cell or range
reference as an argument.

Parameter Description

reference A reference to a cell from which the offset reference is based. If you
specify a range reference, #VALUE! is returned.

rows The number of rows from reference that represents the upper-left cell of
the offset range. A positive number represents rows below the starting
cell; a negative number represents rows above the starting cell. If rows
places the upper-left cell of the offset range outside the spreadsheet
boundary, #REF! is returned.

columns The number of columns from reference that represents the upper-left
cell of the offset range. A positive number represents columns right of
the starting cell; a negative number represents columns left of the
starting cell. If columns places the upper-left cell of the offset range
outside the spreadsheet boundary, #REF! is returned.

height A positive number representing the number of rows to include in the
offset range. Omitting this argument assumes a single row.

width A positive number representing the number of columns to include in
the offset range. Omitting this argument assumes a single column.

Chapter 14 A-Z Worksheet Function Reference 261
Examples This function returns the contents of cell D4:

OFFSET(B1, 3, 2, 1, 1)

This function returns the sum of the values in the range E3:F5:

SUM(OFFSET(A1, 2, 4, 3, 2))

OR
Description Returns True if at least one of a series of logical arguments is true.

Syntax OR (logical_list)

Example This function returns True because one of the arguments is true:

OR(1 + 1 = 1, 5 + 5 = 10)

See Also AND
IF
NOT

PI
Description Returns the value of pi (π), which is approximately 3.14159265358979 when

calculated to 15 significant digits.

Syntax PI ()

Remarks Although PI does not use arguments, you must supply the empty parentheses to
correctly reference the function.

See Also COS
SIN
TAN

Parameter Description

logical_list A list of conditions separated by commas. You can include as many as
30 conditions in the list. The list can contain logical values or a
reference to a range containing logical values. Text and empty cells
are ignored. If there are no logical values in the list, the error value
#VALUE! is returned.

262 Formula One ActiveX User’s Guide
PMT
Description Returns the periodic payment of an annuity, based on regular payments and a fixed

periodic interest rate.

Syntax PMT (interest, nper, pv [, fv] [, type])

Remarks PMT returns only the principal and interest payment, it does not include taxes or
other fees.

The units used for interest must match those used for nper. For example, if the
annuity has an 8 percent annual interest rate over a period of 5 years, specify 8
percent/12 for interest and 5*12 for nper.

Cash paid out, such as a payment, is shown as a negative number. Cash received,
such as a dividend check, is shown as a positive number.

Examples This function returns –439.43:

PMT(8%/12, 48, 18000)

This function returns –436.52:

PMT(8%/12, 48, 18000, 0, 1)

See Also IPMT
FV
NPER
PPMT
PV
RATE

Parameter Description

interest The fixed periodic interest rate.

nper The number of periods in the annuity.

pv The present value, or the amount the annuity is currently worth.

fv The future value, or the amount the annuity will be worth. When
you omit this argument, a future value of 0 is assumed.

type Indicates when payments are due. Use 0 if payments are due at the
end of the period or 1 if payments are due at the beginning of the
period. When you omit this argument, 0 is assumed.

Chapter 14 A-Z Worksheet Function Reference 263
PPMT
Description Returns the principle paid on an annuity for a given period.

Syntax PPMT (interest, per, nper, pv, [fv], [type])

Remarks The units used for interest must match those used for nper. For example, if the
annuity has an 8 percent annual interest rate over a period of 5 years, specify 8
percent/12 for interest and 5*12 for nper.

Examples This function returns –321.56:

PPMT(8%/12, 2, 48, 18000)

This function returns –319.43:

PPMT(8%/12, 2, 48, 18000, 0, 1)

See Also IPMT
FV
NPER
PMT
PPMT
PV
RATE

Parameter Description

interest The fixed periodic interest rate.

per The period for which to return the principle.

nper The number of periods in the annuity.

pv The present value, or the amount the annuity is currently worth.

fv The future value, or the amount the annuity will be worth. When you
omit this argument, a future value of 0 is assumed.

type Indicates when payments are due. Use 0 if payments are due at the end
of the period or 1 if payments are due at the beginning of the period.
When you omit this argument, 0 is assumed.

264 Formula One ActiveX User’s Guide
PRODUCT
Description Multiplies a list of numbers and returns the result.

Syntax PRODUCT (number_list)

Example This function returns 24:

PRODUCT(1, 2, 3, 4)

See Also FACT
SUM

PROPER
Description Returns the specified string in proper-case format.

Syntax PROPER (text)

Remarks In proper-case format, the first alphabetic character in a word is capitalized. If an
alphabetic character follows a number, punctuation mark, or space, it is capitalized.
All other alphabetic characters are lowercase. Numbers are not changed by
PROPER.

Parameter Description

number_list A list of as many as 30 numbers, separated by commas.

The list can contain numbers, logical values, text representations of
numbers, or a reference to a range containing those values.

Error values or text that cannot be translated into numbers return
errors.

If a range reference is included in the list, text, logical expressions,
and empty cells in the range are ignored.

All numeric values, including 0, are used in the calculation.

Parameter Description

text Any string.

Chapter 14 A-Z Worksheet Function Reference 265
Examples This function returns 3Rd Quarter:

PROPER("3rd Quarter")

This function returns John Doe:

PROPER("JOHN DOE")

See Also LOWER
UPPER

PV
Description Returns the present value of an annuity, considering a series of constant payments

made over a regular payment period.

Syntax PV (interest, nper, pmt [, fv] [, type])

Remarks The units used for interest must match those used for nper. For example, if the
annuity has an 8 percent annual interest rate over a period of 5 years, specify 8
percent/12 for interest and 5*12 for nper.

Cash paid out, such as a payment, is shown as a negative number. Cash received,
such as a dividend check, is shown as a positive number.

Examples This function returns –17999.89:

PV(8%/12, 48, 439.43)

This function returns 17999.89:

PV(8%/12, 48, –439.43)

Parameter Description

interest The fixed periodic interest rate.

nper The number of payment periods in the investment.

pmt The fixed payment made each period.

fv The future value, or the amount the annuity will be worth. When you omit
this argument, a future value of 0 is assumed.

type Indicates when payments are due. Use 0 if payments are due at the end of
the period or 1 if payments are due at the beginning of the period. When
you omit this argument, 0 is assumed.

266 Formula One ActiveX User’s Guide
See Also FV
IPMT
NPER
PMT
PPMT
RATE

RAND
Description Returns a number selected randomly from a uniform distribution greater than or

equal to 0 and less than 1.

Syntax RAND ()

Remarks Although RAND does not use arguments, you must supply the empty parentheses to
correctly reference the function.

Example This function returns a random number greater than or equal to 0 and less than 10:.

RAND()*10

RATE
Description Returns the interest rate per period of an annuity, given a series of constant cash

payments made over a regular payment period.

Syntax RATE (nper, pmt, pv [, fv] [, type] [, guess])

Remarks RATE is calculated iteratively, cycling through the calculation until the result is
accurate to .00001 percent. If the result cannot be found after 20 iterations, #NUM!
is returned. When this occurs, supply a different value for guess.

Parameter Description

nper The number of periods in the annuity.

pmt The fixed payment made each period. Generally, pmt includes only
principle and interest, not taxes or other fees.

pv The present value of the annuity.

fv The future value, or the amount the annuity will be worth. When you
omit this argument, a future value of 0 is assumed.

type Indicates when payments are due. Use 0 if payments are due at the
end of the period or 1 if payments are due at the beginning of the
period. When you omit this argument, 0 is assumed.

guess Your estimate of the interest rate. If no argument is supplied, a value
of 0.1 (10 percent) is assumed.

Chapter 14 A-Z Worksheet Function Reference 267
Example The following example returns the monthly interest rate of .0067; the annual interest
rate (.0067 multiplied by 12) is 8 percent:

RATE(48, –439.43, 18000)

See Also FV
IPMT
NPER
PMT
PPMT
PV

REGISTER.ID
Description Returns the register ID of the specified dynamic link library (DLL) that has been

previously registered. If the DLL has not been registered, this function registers the
DLL, and then returns the register ID.

Syntax REGISTER.ID(module_text, procedure, type_text)

Remarks For declarations made in C, it is assumed that your compiler defaults to 8-byte
doubles, 2-byte short integers, and 4-byte long integers. In the Windows
programming environment, all pointers should be far pointers.

Pascal calling conventions are used for all functions called from DLLs. For most C
compilers, you must add the –Pascal keyword to the function declaration.

If the return value for your custom function uses a pass-by-reference data type, a null
pointer can be passed as the return value. The null pointer is interpreted as the
#NUM! error value.

For the F and G data types, a custom function can modify an allocated string buffer.
If the return value type code is F or G, the value returned by the function is ignored.
The list of function arguments is searched for the first data type that corresponds to
the return value type. The current contents of the allocated string buffer is taken for
the return value. 256 bytes is allocated for the argument; therefore, a function can
return a larger string than it receives.

Parameter Description

module_text The text specifying the name of the DLL that contains the function in
Formula One.

procedure The text specifying the name of the function in the DLL in Formula One.
The function name is case dependent in 32-bit Formula One.

type_text The text specifying the data type of the return value and the data types of
all arguments to the DLL. The first letter of type_text specifies the return
value. If the function or code resource is already registered, you can omit
this argument. For a complete list of the data types available, see the
type_text parameter of the CALL worksheet function.

268 Formula One ActiveX User’s Guide
You can use a single digit (n), with a value from 1 to 9, as the code for data_type.
The variable in the location pointed to by the nth argument is modified instead of the
return value; this process is referred to as modifying in place. The nth argument must
be a pass-by-reference data type. In addition, you must declare the function void. For
most C compilers, you can add the Void keyword to the function declaration.

Examples The following formula registers the GetTickCount function with Formula One and
returns the register ID:

REGISTER.ID("Kernel32", "GetTickCount", "J!")

Assuming that GetTickCount was already registered on another sheet using the
preceding formula, the following formula returns the register ID for GetTickCount:

REGISTER.ID("Kernel32", "GetTickCount")

REPLACE
Description Replaces part of a text string with another text string.

Syntax REPLACE (orig_text, start_position, num_chars, repl_text)

Examples This function returns “For the year: 1994”:

REPLACE("For the year: 1993", 18, 1, "4")

See Also MID
SEARCH
TRIM

Parameter Description

orig_text The original text string.

start_position The character position where the replacement begins.

If start_position is greater than the number of characters in orig_text,
repl_text is appended to the end of orig_text.

If start_position is less than 1, #VALUE! is returned.

num_chars The number of characters to replace. If this argument is negative,
#VALUE! is returned.

repl_text The replacement text string.

Chapter 14 A-Z Worksheet Function Reference 269
REPLACEB
Description Replaces part of a text string with another text string.

Syntax REPLACEB (orig_text, start_position, num_bytes, repl_text)

Remarks REPLACEB is case-sensitive. You cannot use wildcard characters in the orig_text.

start_position, num_bytes, and return value are expressed in bytes, so these values
might differ on DBCS systems. On non-DBCS systems, these functions are identical,
but REPLACEB should only be used in special applications that require distinctions
between single-byte and double-byte characters.

Examples This function returns “For the year: 1994”:

REPLACEB("For the year: 1993", 18, 1, "4")

REPT
Description Repeats a text string the specified number of times.

Syntax REPT (text, number)

Remarks The result of REPT cannot exceed 255 characters.

Example This function returns error-error-error-:

REPT("error-", 3)

Parameter Description

orig_text The original text string.

start_position The byte position where the replacement begins.

If start_position is greater than the number of bytes in orig_text,
repl_text is appended to the end of orig_text.

If start_position is less than 1, #VALUE! is returned.

num_bytes The number of bytes to replace. If this argument is negative,
#VALUE! is returned.

repl_text The replacement text string.

Parameter Description

text Any text string.

number The number of times you want text to repeat. If number is
0, empty text ("") is returned.

270 Formula One ActiveX User’s Guide
RIGHT
Description Returns the rightmost characters from the given text string.

Syntax RIGHT (text [, num_chars])

Examples This function returns r:

RIGHT("2nd Quarter")

This function returns Quarter:

RIGHT("2nd Quarter", 7)

See Also LEFT
MID

Parameter Description

text Any text string.

num_chars The number of characters to return. The value must be greater than or
equal to zero. If num_chars is greater than the number of characters in
text, the entire string is returned. Omitting this argument assumes a
value of 1.

Chapter 14 A-Z Worksheet Function Reference 271
RIGHTB
Description Returns the rightmost bytes from the given text string.

Syntax RIGHTB (text [, num_chars])

Remarks num_bytes and return value are expressed in bytes, so these values might differ on
DBCS systems. On non-DBCS systems, these functions are identical, but RIGHTB
should only be used in special applications that require distinctions between single-
byte and double-byte characters.

Examples This function returns r:

RIGHTB("2nd Quarter")

This function returns Quarter:

RIGHTB("2nd Quarter", 7)

ROUND
Description Rounds the given number to the supplied number of decimal places.

Syntax ROUND (number, precision)

Example This function returns 123.46:

ROUND(123.456, 2)

This function returns 9900:

ROUND(9899.435, –2)

Parameter Description

text Any text string.

num_bytes The number of bytes to return. The value must be greater than or equal
to zero. If num_bytes is greater than the number of bytes in text, the
entire string is returned. Omitting this argument assumes a value of 1.

Parameter Description

number Any value.

precision The number of decimal places to which number is rounded.

When a negative precision is used, the digits to the right of the
decimal point are dropped and the absolute number of significant
digits specified by precision are replaced with zeros.

If precision is 0, number is rounded to the nearest integer.

272 Formula One ActiveX User’s Guide
See Also CEILING
FLOOR
INT
MOD
ROUNDDOWN
ROUNDUP
TRUNC

ROUNDDOWN
Description Rounds a number down.

Syntax ROUNDDOWN (number, numberOfDigits)

Example This function returns 31.141:

ROUNDDOWN(3.14159, 3)

This function returns 31.400:

ROUNDDOWN(31415.92654, -2)

See Also CEILING
FLOOR
INT
MOD
ROUND
ROUNDUP
TRUNC

Parameter Description

number Any real number you want to round.

numberOfDigits The number of decimal places to which number is rounded.

When a negative precision is used, the digits to the right of the
decimal point are dropped and the absolute number of significant
digits specified by precision are replaced with zeros.

If precision is 0, number is rounded down to the nearest integer.

Chapter 14 A-Z Worksheet Function Reference 273
ROUNDUP
Description Rounds the given number up to the supplied number of decimal places.

Syntax ROUNDUP (number, numberOfDigits)

Example This function returns 77:

ROUNDUP(76.9,0)

This function returns 3150:

ROUNDUP(31415.92654, -2)

See Also CEILING
FLOOR
INT
MOD
ROUND
ROUNDDOWN
TRUNC

ROW
Description Returns the row number of the supplied reference.

Syntax ROW (reference)

Examples This function returns 3:

ROW(B3)

See Also COLUMN
ROWS

Parameter Description

number Any value you want to round up.

numberOfDigits The number of decimal places to which number is rounded.

When a negative precision is used, the digits to the right of the
decimal point are dropped and the absolute number of significant
digits specified by precision are replaced with zeros.

If precision is 0, number is rounded up to the nearest integer.

Parameter Description

reference A cell or range reference. Omitting this argument returns the row
number of the cell in which ROW is entered.

274 Formula One ActiveX User’s Guide
ROWS
Description Returns the number of rows in a range reference.

Syntax ROWS (range)

Examples This function returns 5:

ROWS(A1:D5)

This function returns 6:

ROWS(C30:F35)

See Also COLUMNS
ROW

SEARCH
Description Locates the position of the first character of a specified text string within another text

string.

Syntax SEARCH (search_text, text [, start_position])

Remarks Text is searched from left to right, starting at the position specified. The search is not
case-sensitive. If text does not contain the search string, #VALUE! is returned.

Examples This function returns 6:

Parameter Description

range A reference to a range of cells.

Parameter Description

search_text The text to find.

The search string can contain wildcard characters. The available
wildcard characters are * (asterisk), which matches any sequence of
characters, and ? (question mark), which matches any single
character.

To search for an asterisk or question mark, include a tilde (~) before
the character.

text The text to be searched.

start_position The character position where the search begins. If the number you
specify is less than 0 or greater than the number of characters in
text, #VALUE! is returned. Omitting this argument assumes a
starting position of 1.

Chapter 14 A-Z Worksheet Function Reference 275
SEARCH("?5", "Bin b45")

This function returns 5:

SEARCH("b", "Bin b45", 4)

See Also FIND
MID
REPLACE
SUBSTITUTE

SEARCHB
Description Locates the position of the first byte of a specified text string within another text

string.

Syntax SEARCHB (search_text, text [, start_position])

Remarks Text is searched from left to right, starting at the position specified. The search is not
case-sensitive. If text does not contain the search string, #VALUE! is returned.

start-position and return value are expressed in bytes, so these values might differ on
DBCS systems. On non-DBCS systems, these functions are identical, but
SEARCHB should only be used in special applications that require distinctions
between single-byte and double-byte characters.

Examples This function returns 6:

SEARCHB("?5", "Bin b45")

This function returns 5:

SEARCHB("b", "Bin b45", 4)

Parameter Description

search_text The text to find.

To search for an asterisk or question mark, include a tilde (~) before
the character. The search string can contain wildcards. The
available wildcard characters are * (asterisk), which matches any
sequence of characters, and ? (question mark), which matches any
single character.

text The text to be searched.

start_position The character position where the search begins. If the number you
specify is less than 0 or greater than the number of bytes in text,
#VALUE! is returned. Omitting this argument assumes a starting
position of 1.

276 Formula One ActiveX User’s Guide
SECOND
Description Returns the second that corresponds to the supplied date.

Syntax SECOND (serial_number)

Examples This function returns 58:

SECOND(.259)

This function returns 46:

SECOND(34657.904)

See Also DATE
DAY
HOUR
MINUTE
MONTH
NOW
TODAY
WEEKDAY
YEAR

SIGN
Description Determines the sign of the specified number.

Syntax SIGN (number)

Remarks SIGN returns 1 if the specified number is positive, –1 if it is negative, and 0 if it is 0.

Examples This function returns –1:

SIGN(–123)

This function returns 1:

SIGN(123)

See Also ABS

Parameter Description

serial_number The time as a serial number. The decimal portion of the
number represents time as a fraction of the day.

Parameter Description

number Any number.

Chapter 14 A-Z Worksheet Function Reference 277
SIN
Description Returns the sine of the supplied angle.

Syntax SIN (number)

Examples This function returns .85:

SIN(45)

This function returns .89:

SIN(90)

See Also ASIN
PI

SINH
Description Returns the hyperbolic sine of the specified number.

Syntax SINH (number)

Examples This function returns 1.18:

SINH(1)

This function returns 10.02:

SINH(3)

See Also ASINH
PI

Parameter Description

number The angle in radians. If the angle is in degrees, convert the angle to
radians by multiplying the angle by PI()/180.

Parameter Description

number Any number.

278 Formula One ActiveX User’s Guide
SLN
Description Returns the depreciation of an asset for a specific period of time using the straight-

line balance method.

Syntax SLN (cost, salvage, life)

Example This function returns 1285.71:

SLN(10000, 1000, 7)

See Also DDB
SYD
VDB

SQRT
Description Returns the square root of the specified number.

Syntax SQRT (number)

Examples This function returns 3:

SQRT(9)

This function returns 1.58:

SQRT(2.5)

See Also SUMSQ

Parameter Description

cost The initial cost of the asset.

salvage The salvage value of the asset.

life The number of periods of the useful life of the asset.

Parameter Description

number Any positive number. If you specify a negative number, the error
#NUM! is returned.

Chapter 14 A-Z Worksheet Function Reference 279
STDEV
Description Returns the standard deviation of a population based on a sample of supplied values.

The standard deviation of a population represents an average of deviations from the
population mean within a list of values.

Syntax STDEV (number_list)

Example This function returns .56:

STDEV(4.0, 3.0, 3.0, 3.5, 2.5, 4.0, 3.5)

See Also STDEVP
VAR
VARP

STDEVP
Description Returns the standard deviation of a population based on an entire population of

values. The standard deviation of a population represents an average of deviations
from the population mean within a list of values.

Syntax STDEVP (number_list)

Example This function returns .52:

STDEVP(4.0, 3.0, 3.0, 3.5, 2.5, 4.0, 3.5)

See Also STDEV
VAR
VARP

Parameter Description

number_list A list of as many as 30 numbers, separated by commas. The list can
contain numbers or a reference to a range that contains numbers.

Parameter Description

number_list A list of as many as 30 numbers, separated by commas. The list
can contain numbers or a reference to a range that contains
numbers.

280 Formula One ActiveX User’s Guide
SUBSTITUTE
Description Replaces a specified part of a text string with another text string.

Syntax SUBSTITUTE (text, old_text, new_text [, instance])

Examples This function returns “Second Quarter Results”:

SUBSTITUTE("First Quarter Results", "First", "Second")

This function returns "Shipment 45, Bin 52":

SUBSTITUTE("Shipment 45, Bin 45", "45", "52", 2)

See Also REPLACE
TRIM

SUM
Description Returns the sum of the supplied numbers.

Syntax SUM (number_list)

Parameter Description

text A text string that contains the text to replace. You can also specify a
reference to a cell that contains text.

old_text The text string to be replaced.

new_text The replacement text.

instance Specifies the occurrence of old_text to replace. If this argument is
omitted, every instance of old_text is replaced.

Parameter Description

number_list A list of as many as 30 numbers, separated by commas.

The list can contain numbers, logical values, text representations
of numbers, or a reference to a range containing those values.

Error values or text that cannot be translated into numbers return
errors.

If a range reference is included in the list, text, logical
expressions, and empty cells in the range are ignored.

Chapter 14 A-Z Worksheet Function Reference 281
Examples This function returns 6000:

SUM(1000, 2000, 3000)

This function returns 4000 when each cell in the range contains 1000:

SUM(A10:D10)

See Also AVERAGE
COUNT
COUNTA
PRODUCT
SUMSQ

SUMIF
Description Returns the sum of the specified cells based on the given criteria.

Syntax SUMIF (range, criteria, sum_range)

See Also AVERAGE
COUNT
COUNTA
COUNTIF
PRODUCT
SUMSQ
SUM

Parameter Description

range The range of cells you want evaluated.

criteria A number, expression, or text that defines which cells are
added. For example, criteria can be expressed as 15, “15”,
“>15”, “cars”.

sum_range The actual cells to sum. These cells are only summed if
their corresponding cells in range match the criteria. If this
argument is omitted, the cells in range are summed.

282 Formula One ActiveX User’s Guide
SUMPRODUCT
Description Multiplies the corresponding cells in the given ranges, then returns the sum of those

products.

Syntax SUMPRODUCT (range_list)

Remarks All the ranges in range_list must contain the same number of cells in the same
arrangement. That is, if the first range is three rows deep and three columns wide, the
second and subsequent ranges must also be three rows deep and three columns wide.

Examples The following examples use this worksheet.

This formula returns 32:

SUMPRODUCT(A1:A3,B1:B3)

That is, 1 x 4 = 4
2 x 5 = 10
3 x 6 = 18

32

This formula returns 630:

SUMPRODUCT(A1:C1,A2:C2,A3:C3)

That is, 1 x 2 x 3 = 6
4 x 5 x 6 = 120
7 x 8 x 9 = 504

630

This formula returns 50:

SUMPRODUCT(A1:A3,C1:C3)

Parameter Description

range_list Two or more range references that provide the sets of numbers
you want to multiply. The first cell in the first range is multiplied
with the first cell in the second range. Then all the products are
summed.

Chapter 14 A-Z Worksheet Function Reference 283
SUMSQ
Description Squares each of the supplied numbers and returns the sum of the squares.

Syntax SUMSQ (number_list)

Example This function returns 302:

SUMSQ(9, 10, 11)

See Also SUM

SYD
Description Returns the depreciation of an asset for a specified period using the sum-of-years

method. This depreciation method uses an accelerated rate, where the greatest
depreciation occurs early in the useful life of the asset.

Syntax SYD (cost, salvage, life, period)

Example This function returns 1607.14:

SYD(10000, 1000, 7, 3)

See Also DDB
SLN
VDB

Parameter Description

number_list A list of as many as 30 numbers, separated by commas.

The list can contain numbers, logical values, text representations of
numbers, or a reference to a range containing those values.

Error values or text that cannot be translated into numbers return
errors.

If a range reference is included in the list, text, logical expressions,
and empty cells in the range are ignored.

Parameter Description

cost The initial cost of the asset.

salvage The salvage value of the asset.

life The number of periods in the useful life of the asset.

period The period for which to calculate the depreciation. The time units
used to determine period and life must match.

284 Formula One ActiveX User’s Guide
T
Description Tests the supplied value and returns the value if it is text.

Syntax T (value)

Remarks Empty text (“ ”) is returned for any value that is not text.

Examples This function returns Report:

T("Report")

This function returns empty text (“ ”) if A4 contains a number:

T(A4)

See Also N
VALUE

TAN
Description Returns the tangent of the specified angle.

Syntax TAN (number)

Examples This function returns 0.752:

TAN(0.645)

This function returns 1:

TAN(45*PI()/180)

See Also ATAN
ATAN2
PI
TANH

Parameter Description

value The value to test.

Parameter Description

number The angle in radians. To convert a number expressed as degrees to
radians, multiply the degrees by PI()/180.

Chapter 14 A-Z Worksheet Function Reference 285
TANH
Description Returns the hyperbolic tangent of a number.

Syntax TANH (number)

Examples This function returns –.96:

TANH(–2)

This function returns .83:

TANH(1.2)

See Also ATANH
COSH
SINH
TAN

TEXT
Description Returns the given number as text, using the specified formatting.

Syntax TEXT (number, format)

Examples This function returns 123.620:

TEXT(123.62, "0.000")

This function returns 10/19/94:

TEXT(34626.2, "MM/DD/YY")

Parameter Description

number Any number.

Parameter Description

number Any value, a formula that evaluates to a number, or a reference to a
cell that contains a value.

format A string representing a number format. The string can be any valid
format string including “General,” “M/DD/YY,” or “H:MM
AM/PM.” The format must be surrounded by a set of double
quotation marks. Asterisks cannot be included in format.

286 Formula One ActiveX User’s Guide
See Also DOLLAR
FIXED
T
VALUE

TIME
Description Returns a serial number for the supplied time.

Syntax TIME (hour, minute, second)

Examples This function returns .52:

TIME(12, 26, 24)

This function returns .07:

TIME(1, 43, 34)

See Also HOUR
MINUTE
NOW
SECOND
TIMEVALUE

TIMEVALUE
Description Returns a serial number for the supplied text representation of time.

Syntax TIMEVALUE (text)

Examples This function returns .07:

TIMEVALUE("1:43:43 am")

Parameter Description

hour A number from 0 to 23.

minute A number from 0 to 59.

second A number from 0 to 59.

Parameter Description

text A time in text format.

Chapter 14 A-Z Worksheet Function Reference 287
This function returns .59:

TIMEVALUE("14:10:07")

See Also HOUR
MINUTE
NOW
SECOND
TIME

TODAY
Description Returns the current date as a serial number.

Syntax TODAY ()

Remarks This function is updated only when the worksheet is recalculated.

See Also DATE
DAY
NOW

TRIM
Description Removes all spaces from text except single spaces between words.

Syntax TRIM (text)

Remarks Text that is imported from another environment may require this function.

Example This function returns Level 3, Gate 45:

TRIM(" Level 3, Gate 45 ")

See Also CLEAN
MID
REPLACE
SUBSTITUTE

Parameter Description

text Any text string or a reference to a cell that contains a text string.

288 Formula One ActiveX User’s Guide
TRUE
Description Returns the logical value True. This function always requires the trailing parentheses.

Syntax TRUE ()

See Also FALSE

TRUNC
Description Truncates the given number to an integer.

Syntax TRUNC (number [, precision])

Remarks TRUNC removes the fractional part of a number to the specified precision without
rounding the number.

Examples This function returns 123.45:

TRUNC(123.456, 2)

This function returns 9800:

TRUNC(9899.435, –2)

See Also CEILING
FLOOR
INT
MOD
ROUND

Parameter Description

number Any value.

precision The number of decimal places allowed in the truncated number.
Omitting this argument assumes a precision of 0.

Chapter 14 A-Z Worksheet Function Reference 289
TYPE
Description Returns the argument type of the given expression.

Syntax TYPE (expression)

Remarks The valid values returned by this argument are:

Examples This function returns 1 if cell A1 contains a number:

TYPE(A1)

This function returns 2:

TYPE("Customer")

See Also ISBLANK
ISERR
ISERROR
ISLOGICAL
ISNA
ISNONTEXT
ISNUMBER
ISREF
ISTEXT

UPPER
Description Changes the characters in the specified string to uppercase characters.

Syntax UPPER (text)

Parameter Description

expression Any expression.

Number Description

1 Number

2 Text string

4 Logical value

16 Error value

Parameter Description

text Any string.

290 Formula One ActiveX User’s Guide
Remarks Numeric characters in the string are not changed.

Examples This function returns 3RD QUARTER:

UPPER("3rd Quarter")

This function returns JOHN DOE:

UPPER("JOHN DOE")

See Also LOWER
PROPER

USDOLLAR
Description Returns the specified number as text using the US Dollar format and the supplied

precision. Omitting the precision argument assumes two decimal places.

Syntax USDOLLAR (number [, precision])

Examples This function returns $1023.79:

USDOLLAR(1023.789)

This function returns $500:

USDOLLAR(495.301, –2)

See Also FIXED
TEXT
VALUE
DOLLAR

Parameter Description

number A number, a formula that evaluates to a number, or a reference to
a cell that contains a number.

precision A value representing the number of decimal places to the right of
the decimal point. Omitting this argument assumes two decimal
places.

Chapter 14 A-Z Worksheet Function Reference 291
VALUE
Description Returns the specified text as a number.

Syntax VALUE (text)

Examples This function returns 9800:

VALUE(9800)

This function returns 123:

VALUE("123")

See Also DOLLAR
FIXED
TEXT

VAR
Description Returns the variance of a population based on a sample of values.

Syntax VAR (number_list)

Example This function returns .31:

VAR(4.0, 3.0, 3.0, 3.5, 2.5, 4.0, 3.5)

See Also STDEV
STDEVP
VARP

Parameter Description

text Any text string, a formula that evaluates to a text string, or a cell
reference that contains a text string. You can also specify a date or time
in a recognizable format (for example, M/DD/YY for dates or H:MM
AM/PM for time). If the format is not recognized, #VALUE! is returned.

Parameter Description

number_list A list of as many as 30 numbers, separated by commas. The list can
contain numbers or a reference to a range that contains numbers.

292 Formula One ActiveX User’s Guide
VARP
Description Returns the variance of a population based on an entire population of values.

Syntax VARP (number_list)

Example This function returns .27:

VARP(4.0, 3.0, 3.0, 3.5, 2.5, 4.0, 3.5)

See Also STDEV
STDEVP
VAR

VDB
Description Returns the depreciation of an asset for a specified period using a variable method of

depreciation.

Syntax VDB (cost, salvage, life, start_period, end_period [, factor] [, method])

Parameter Description

number_list A list of as many as 30 numbers, separated by commas. The list can
contain numbers or a reference to a range that contains numbers.

Parameter Description

cost The initial cost of the asset.

salvage The salvage value of the asset.

life The number of periods in the useful life of the asset.

start_period The beginning period for which to calculate the depreciation. The
time units used to determine start_period and life must match.

end_period The ending period for which to calculate the depreciation. The time
units used to determine end_period and life must match.

factor The rate at which the balance declines. Omitting this argument
assumes a default of 2, which is the double-declining balance
factor.

method A logical value that determines if you want to switch to straight-line
depreciation when depreciation is greater than the declining balance
calculation. Use True to maintain declining balance calculation; use
False or omit the argument to switch to straight-line depreciation
calculation.

Chapter 14 A-Z Worksheet Function Reference 293
Example This function returns 1041.23:

VDB(10000, 1000, 7, 3, 4)

See Also DDB
SLN
SYD

VLOOKUP
Description Searches the first column of a table for a value and returns the contents of a cell in

that table that corresponds to the location of the search value.

Syntax VLOOKUP (search_item, search_range, column_index)

Remarks VLOOKUP compares the information in the first column of search_range to the
supplied search_item. When a match is found, information located in the same row
and supplied column (column _index) is returned.

If search_item cannot be found in the first column of search_range, the largest value
that is less than search_item is used. When search_item is less than the smallest value
in the first column of the search_range, #REF! is returned.

Parameter Description

search_item A value, text string, or reference to a cell containing a value that is
matched against data in the top row of search_range.

search_range The reference of the range (table) to be searched. The cells in the
first column of search_range can contain numbers, text, or logical
values. The contents of the first column must be in ascending order
(for example, –2, –1, 0, 2...A through Z, False, True). Text searches
are not case-sensitive.

column_index The column in the search range from which the matching value is
returned.

column_index can be a number from 1 to the number of rows in the
search range.

If column_index is less than 1, #VALUE! is returned.

When column_index is greater than the number of rows in the table,
#REF! is returned.

294 Formula One ActiveX User’s Guide
Examples The following examples use this worksheet.

This function returns $28,700:

VLOOKUP("Clark", A2:E9, 4)

This function returns 3961:

VLOOKUP("Lee", A2:E9, 3)

See Also HLOOKUP
INDEX
LOOKUP
MATCH

WEEKDAY
Description Returns the day of the week that corresponds to the supplied date.

Syntax WEEKDAY (serial_number)

Remarks WEEKDAY returns a number ranging from 1 (Sunday) to 7 (Saturday).

Examples This function returns 1, indicating Sunday:

WEEKDAY(34399.92)

This function returns 3, indicating Tuesday:

WEEKDAY("06/21/94")

Parameter Description

serial_number The date as a serial number or as text (for example, 06-21-94 or
21-Jun-94).

Chapter 14 A-Z Worksheet Function Reference 295
See Also DAY
NOW
TEXT
TODAY

YEAR
Description Returns the year that corresponds to the supplied date.

Syntax YEAR (serial_number)

Examples This function returns 1993:

YEAR(34328)

This function returns 1994:

YEAR("06/21/94")

See Also DAY
NOW
HOUR
MINUTE
MONTH
SECOND
TODAY
WEEKDAY

Parameter Description

serial_number The date as a serial number or as text (for example, 06-21-94
or 21-Jun-94).

Tidestone

297

Index
A
About box

displaying every 30 minutes xi, xii
viewing xii

AboutBox method xii
ABS function 203
Absolute cell references 70
ACOS function 203
ACOSH function 204
Active

cell 57, 58, 60
worksheet 50, 59

ActiveX
Add-Ins in Visual Basic 183–188
controls, adding to your application 1

AddColPageBreak method 153
Add-In functions

creating 183
formula evaluation errors, chart 198
requirements for 184

AddPageBreak method 153
ADDRESS function 205
AddRowPageBreak method 153
AddSelection method 61
AlignHorizontal property 108
Aligning data 107–108

Center toolbar button 43
Left Align toolbar button 43
Merge and Center toolbar button 43
Right Align toolbar button 43
SetAlignment method 52

AlignVertical property 108
Allocating memory 179
AllowArrows property 86
AllowCellTextDlg property 81, 86
AllowDelete property 58, 81, 86
AllowDesigner property 37
AllowEditHeaders property 81, 82, 121
AllowFillRange property 81, 86
AllowFormulas property 81, 85
AllowInCellEditing property 81
AllowMoveRange property 81, 86
AllowObjSelections property 62, 129, 146
AllowResize property 81, 86, 113
AllowSelections property 62
AllowTabs property 86
Anchors in HTML files 171

AND function 206
Arc command (Insert menu) 40
Arcs

creating 123–125
tool for 125

Area references as arguments 185
Arguments

2D area reference 192
2D, 3D, and union 192
and return values 191
in functions 73, 74

Arithmetic operators 68
Array arguments in functions 183
#ARRAY_FORMULA! error 72
Arrow keys 58, 85
ASIN function 206
ASINH function 207
ATAN function 208
ATAN2 function 208
ATANH function 209
Attach method 27, 30
AttachToSS method 27, 30
Autofill lists 74

adding 75
deleting 76
dragging for filling 88

AutoFillItems property 75, 76
AutoFillItemsCount method 75
Automatic recalculation 77
AutoPageNumber property 155
AutoRecalc property 77, 78
AVERAGE function 209
Axes page, in Chart Wizard 144

B
Background color, for graphical objects 133
Bar gap, on charts 143
Binding worksheet columns 169
Black and white printing 159
BlackAndWhite property 159
BLOBs

reading and writing workbooks as 33
using multiple versions of Formula One and 33

Bold toobar button 43
Boolean 184
BorderColor property 117

298 Formula One ActiveX User’s Guide
Borders
on cells 116–118
on graphical objects 134–135

BorderStyle property 117
BottomMargin property 154
Bring to Front command (Format menu) 41, 132
Built-in

formats 99–100
functions 72–74

Button command (Insert menu) 40
Buttons

creating 123–125
formatting 137
tool for 125

ByVal 183

C
C++ Add-In API 189–198
Calculating workbooks 77–79

automatically 77
circular references when 79

CALL function 78
Cancel Insert Object command (Insert menu) 40
Cancelling data entry or editing 58
CEILING function 212
Cell reference in formula bar 46, 64
Cell references 69–71

as function arguments 74
automatically entering 71
for check boxes 138
for dropdown list boxes 135, 138
in formulas 69–71
in validation rules 82
of merged cells 109
to other workbooks 71
to other worksheets 70
with named row and column headings 121

Cells
active 57, 58, 60
aligning data in 107–108
attributes of 87
borders on 116–118
clearing 97
deleting 98
displaying data types, with type markers 46
formatting to optimize memory 177
inserting 96
limiting number displayed on a worksheet 55–56
locking 81–82
merged 109–110
naming 76
preventing resizing of 86

Cells (continued)
preventing selection of 62
programatically clearing 98
selecting 60–61
selecting with properties and methods 61
selecting with the keyboard 58–59
selecting with the mouse 60
type markers 46

Cells command (Format menu) 40, 81, 83, 99, 102, 107,
108, 109, 117, 118

Cells command (Insert menu) 39
Center Across toolbar button 43
Center toolbar button 43
CenterHoriz property 154
CenterVert property 154
CFormView-based applications, in Visual C++ 2–3

adding Formula One to 4–5
CHAR function 213
Chart command (Insert menu) 39, 141
Chart Designer 145
Chart Wizard 142–146

labeling chart axes in 144
modifying existing charts with 144
navigating in 142
selecting chart types in 143
selecting styles in 143
setting chart elements in 144

Charts 141–147
changing chart data 145
creating 123–125, 142–147
data range for 146
data requirements for different types 142
formatting with the Chart Designer 145
modifying data 145
modifying, with the Chart Wizard 144
referencing data on a different worksheet 147
selecting styles 143
selecting types 143
tool for 125

Check boxes
creating 123–125
formatting 136
input value cells for 138
selection values for 137–139
tool for 125

Checkbox command (Insert menu) 40
CHOOSE function 214
Circles. See Ovals
Circular references, calculating 79
CLEAN function 215
Clear All command (Edit menu) 38
Clear Contents command (Edit menu) 38
Clear Formats command (Edit menu) 38

Index 299
ClearClipboard method 92
Clearing, cells 97
ClearRange method 52, 98
Clipboard, pasting from, with methods 92
Close command (File menu) 37
CODE function 215
Col property (F1FindReplaceInfo object) 95
ColHeadings property 159
ColHidden property 113
Colon (:), in range references 69
Color palette 48
Color toolbar button 43
Colors

defining, in color palette 48
for borders of graphical objects 134
for cell borders 117
for cell data 107
for filling cells 118–119
for graphical objects 133–134
in number formats 105
maximum number, per workbook 180
printing as shades of gray 159

ColText property 52, 121
Column Autofit Selection command (Format menu) 40
Column Default Width command (Format menu) 41
COLUMN function 216
Column headings

formatting 119
hiding 56
preventing changes to 82
preventing resizing of 86
printing 159
selecting 119
sizing 120
text of 120–121

Column Hide command (Format menu) 40
Column Unhide command (Format menu) 41
Column width

affected by default font 46
affected by displaying formulas 56

Column Width command (Format menu) 40
Columns

applying number formats 101
building to optimize memory 177
deleting 98
freezing 116
headings (see column headings)
inserting 96
maximum width 180
preventing selection of 62
print titles and 151
selecting 61
setting widths of 110–114

Columns (continued)
automatically 113
default 111

Columns command (Insert menu) 39
COLUMNS function 78, 216
ColWidth property 52, 113
ColWidthDlg method 52, 113
ColWidthTwips property 113
ColWidthUnits property 46, 114
Commas

in cell references 70
in functions 73

Common Fixed and General Formats toolbar button 43
Comparison operators 68
CONCATENATE function 217
Conditional values, in number formats 105
Connect string 163
Constant values

entering 66–67
naming 76
using to optimize memory 177

Constants, not read in Visual C++ 2
Context menu 57
Converting from previous versions of Formula One 20
Copy Cell Format command (Edit menu) 38
Copy command (Edit menu) 38
Copy Format toolbar button 42
Copy toolbar button 42
CopyAll method 92
CopyDataFromArray method 93
CopyDataToArray method 93
Copying

cell references 92
data

across ranges 93
and optimizing performance 178
by dragging 57, 88
with drag-and-drop 88
with menu commands 91
with methods 92, 93

formulas 92
CopyRange method 52, 93, 178
CopyRangeEx method 7, 93, 178
COS function 217
COSH function 218
COUNT function 218
COUNTA function 219
COUNTIF function 220
CreateNewCellFormat method 117
Currency toolbar button 43
Currency, formatting numbers as 100
Custom data formats 102–106
Cut command (Edit menu) 38

300 Formula One ActiveX User’s Guide
Cut toolbar button 42
Cutting

cell references 92
data

and optimizing performance 178
with menu commands 91
with methods 92, 93

formulas 92
CView-based applications, in Visual C++ 2–3

adding Formula One to 5–6

D
Data

aligning 107–108
clearing 98
filling worksheets with, and optimizing memory 179
formatting 99–108

built-in formats for 99–100
custom formats for 102–106

inserting or updating in databases 167
ranges of (see ranges)
retrieving from database 161–170
sorting 98
types of 66
validating 82

Data entry 63–65
constant values and 66–67
formulas and 67–72
limiting 80–86
multi-line 65
properties for 64
with check boxes and dropdown list boxes 137

Data Grid Editor 145
Data structure 178
Data types, displaying with type markers 46
Databases 161–170

binding worksheet columns in 169
connecting to 161, 162
disconnecting from 170
installing ODBC drivers for 161
PREPARE statements for 168, 170
querying 164
setting up 162
workbooks in 33

DataTransferRange property 93
Date and Time toolbar button 44
DATE function 220
Dates

entering 67
formatting numbers as 101, 104
printing, in headers and footers 157
range of, accepted by Formula One x

DATEVALUE function 221
DAY function 221
Days of the week, automatically entering names of 74
DB function 223
DDB function 223
Declaring Add-In Functions in C++ 189
Default Font command (Format menu) 41
Default Height command (Format menu) 111
Default Width command (Format menu) 111
Defaults

column width 111
font 46
for data alignment 107
for locking cells 82
number format 99
row height 111
workbook display options 45–48
worksheet display options 55–56

DefColWidthDlg method 52
DefinedName property 76
DefineSearch method ix, 95
DefRowHeightDlg method 52
Delete command (Edit menu) 39
Delete Sheet command (Edit menu) 39, 54
DeleteAutofillItems method 76
DeleteDlg method 52
DeleteRange method 52, 98
DeleteSheets method 54
Deleting

autofill lists 76
cells 97, 98
columns 98
page breaks 152–153
ranges 98
rows 98
worksheets 54

Development environments, for Formula One 1
Dialog-based applications, in Visual C++ 2–3

adding Formula One to 4–5
Disconnecting from databases 170
Displaying

cell reference in formula bar 46, 64
cells on a worksheet 55–56
data types, with type markers 46
formula bar 46, 64
formulas 72
parts of the workbook 45–48
parts of worksheets 55–56
type markers 46
worksheet tabs 46
zero values 56

#DIV/0! error 72
Docking the toolbars 37

Index 301
Documentation conventions xiii
DOLLAR function 224
Dollar sign ($), in cell references 70
DoSafeEvents property 175
Double 184
Drag-and-drop

copying data using 88
copying from other applications using 90
moving data using 88

Dragging
copying using 88
filling from autofill lists using 88
preventing users from 86

Drawing and Forms Toolbar command (View menu) 39
Drawing toolbar 36
Drawing, graphical objects interactively 124
Drivers, ODBC 161
Dropdown List box command (Insert menu) 40
Dropdown list boxes

creating 123–125
formatting 135
input value cells for 138
items in 136
numbering scheme for items 137
selection values for 137–139
tool for 125

E
Edge of worksheet, moving the active cell to 59
Edit menu, in Workbook Designer 38
Edit mode 58

See also In-cell editing
EditClear method 52, 98
EditCopy method 92
EditCopyDown method 93, 178
EditCopyRight method 93, 178
EditCut method 92
EditDelete method 52, 98
EditDeleteSheets method 54
EditInsert method 52, 96, 98
EditInsertSheets method 53
EditPaste method 92
EditPasteValues method 92
Embedding Data in HTML files 171
EnableProtection property 52, 81
EndCol property 131
EndRow property 131
EnterMovesDown property 58, 86
Entry property 52, 64, 83
EntryRC property 52, 64, 83
EntrySRC property 52

Equal sign (=)
in formulas 67
in functions 73

Error values, default alignment of 107
ERROR.TYPE function 225
Errors

entering 67
function syntax 74
trapping, in PowerBuilder 20
worksheet formula 72

Escape key 58
EVEN function 226
Events, Formula One, in Visual C++ 7
EXACT function 227
Excel

4.x file format 32, 37
features ignored in Formula One 32
graphical objects 123
password-protected files 32
reading and writing files 32
validation rules 83

Exclamation mark (!), in sheet references 70
Executing PREPARE statements 170
Exit command (File menu) 38
EXP function 227
External references 71

F
F1AddInArray 184, 185
F1AddInArrayEx 184, 185
F1AddInInit 190
F1AddInRegisterFunctionProc 191
F1AddInRegisterInfoProc 190
F1Book API object 23

guidelines for using 30
understanding the 26–27

F1BookView API object 23
guidelines for using 30
properties and methods that cannot be used with 29
understanding the 27–30

F1CellFormat API object 24, 116, 117
F1EventArg API object 24
F1FileSpec API object 24
F1FindReplaceInfo API object 23
F1Functions 183
F1NumberFormat API object 24
F1ObjPos API object 24, 131
F1ODBCConnect API object 24, 162
F1ODBCQuery API object 24, 164
F1PateSetup API object 24
F1RangeRef API object 24, 61
F1Rect API object 24

302 Formula One ActiveX User’s Guide
F1ReplaceResults API object 24
FACT function 228
FALSE function 228
File menu, in Workbook Designer 37
FilePageSetupDlg method 52, 149
FilePageSetupDlgEx method 52
FilePrint method 149
FilePrintEx method 7, 150
FilePrintPreview method 160
FilePrintSetupDlg method 150
Fill command (Edit menu) 38
Filling

preventing users from, with mouse 86
ranges 74
worksheets with data, and optimizing memory 179

Find and replace 94
using properties and methods 95
using the Workbook Designer 94

Find command (Edit menu) 39
Find dialog box 94
FIND function 228
FINDB function 229
FindDlg method 95
FindNext method x, 95
First Impression ActiveX control 141–147, 161

Chart Designer 145
Data Grid Editor 145
using to draw charts 125, 141

FirstPageNumber property 155
FitPages property 158
FIXED function 230
FixedCol property 116
FixedRow property 116
Fixing rows and columns. See Freezing panes
FLOOR function 230
Fonts

changing default 46
default affects column width 46
formatting 106–107
Formula One’s default 47
maximum number, per workbook 180
scripts in 47, 107

FooterMargin property 154
Footers

formatting codes for 156–157
margins for 154
printing 156–157

Footnotes, for charts 144
Foreground color, for graphical objects 133
Format menu, in Workbook Designer 40
FormatAlignmentDlg method 52
FormatBorderDlg method 52
FormatCellsDlg method 52, 84, 102, 108, 118, 119

FormatFontDlg method 52
FormatNumberDlg method 52
FormatObjectDlg method 128, 134, 135, 136
FormatPaintMode property 38
FormatPatternDlg method 52
FormatSheetDlg method 52
FormattedText property 101
FormattedTextRC property 101
FormattedTextSRC property 101
Formatting

cell borders 116–118
cells, to optimize memory 177
column widths 110–114

programmatically 114
data 99–108
fonts 106–107
graphical objects 133–137
row and column headings 119
row heights 110–114

programmatically 114
with built-in data formats 99–100
with custom data formats 102–106

Formatting toolbar 36, 43
Formula bar 36

displaying 46, 64, 80
Formula Bar command (View menu) 39, 64
Formula evaluation errors 198
Formula One

1.x file format 32
2.x file format 20, 32, 37
adding the component to PowerBuilder 12–13, 16, 19
adding the component to Visual Basic 8–9
adding the component to Visual C++ 3–6
data structure of 178
documentation conventions of xiii
features ignored in Excel 32
installation of x–xii
new features of ix
objects 23–24
technical support of xii
trial version of x, xii
upgrading from previous versions 20
using multiple versions of 21, 33

Formula property 52, 65, 67
FormulaLocal property 52
FormulaLocalRC property 52
FormulaLocalSRC property 52
FormulaRC property 52, 65, 67
Formulas

cell references in 69–71
copying data and 92
cutting data and 92
displaying 56, 72

Index 303
Formulas (continued)
entering 67–72
errors in 72
external cell references in 71
functions and 72–74
limiting entry of 85
maximum length 180
naming 76
operators in 68
operators precedence in 69

FormulaSRC property 52, 67
Fraction toolbar button 44
Fractions, formatting numbers as x, 100
Freeing memory 179
Freeze Panes command (Format menu) 41, 115, 116
Freezing panes 115–116

example of 115
programmatically 116

Functions 72–74, 203–295
arguments for 74
cell references in 74
entering 73
maximum number of arguments 180
nesting 73
syntax errors in 74
using array arguments in 183

FV function 231

G
Gallery page, in Chart Wizard 143
GetArrayType 185
GetCellFormat method 81
GetIteration method 79
Goto command (Edit menu) 39
Graphical objects

arranging layers of 132–133
borders 134–135
creating 123–125
drawing interactively 124
editing polygons 139–140
fill colors and patterns 133–134
formatting 133–137
hiding 135
identifying 126
input value cells for 138
moving 130–132
naming 128
not supported in Excel 123
preventing selection of 62, 129
repositioning 57
resizing 57
selecting 128–130

Graphical objects (continued)
selection values for 137–139
sizing 130–132
using mouse mode when creating 126

Grid lines
aligning graphical objects to 125, 130
hiding 56
printing 159

GridLines property 159

H
HAlign property 52
HdrHeight property 52, 120
HdrWidth property 52, 120
HeaderMargin property 154
Headers

formatting codes for 156–157
margins for 154
printing 156–157
row and column (see row headings, column headings)

Headings, creating using merged cells 109
Height command (Format menu) 112
Hiding

calculations 27
column headings 56
graphical objects 135
grid lines 56
row headings 56
type markers 46
worksheet tabs 31, 46
zero values 56

HLOOKUP function 232
HOUR function 233
HTML 171

anchors 171
reading and writing file types 32
source files 171
writing a range to an HTML file 34

I
IDataObject 93
Identifying graphical objects by number 126
IF function 234
Images, importing 125
Import command (File menu) 37
In-cell editing 57

disabling 85
in-cell edit space x
See also Edit mode

INDEX function 78, 234

304 Formula One ActiveX User’s Guide
Index list of worksheets 50, 53, 71
Index numbers, of worksheets 31
INDIRECT function 78, 235
Insert menu, in Workbook Designer 39
InsertDlg method 52
InsertHTML method 34, 172
Inserting

cells 96
columns 96
database data 167
rows 96
worksheets 49, 52

InsertRange method 52, 96
InsertSheets method 53
Installing, Formula One x–xii
Instancing property 183
INSTPROB.DOC file xii
INT function 236
IntelliPoint mouse 57
Internet development

events for 174
methods for 174
performing 173–175

Intranet development
events for 174
methods for 174
performing 173–175

Invisible workbooks
attaching 30
See also F1BookView API object

IObjectSafety interface 171, 174
IPMT function 236
IRR function 237
ISBLANK function 238
ISERR function 239
ISERROR function 239
ISLOGICAL function 240
ISNA function 240
ISNONTEXT function 241
ISNUMBER function 242
ISREF function 242
ISTEXT function 243
Italic toolbar button 43
Items, in dropdown list boxes 136
IterationEnabled property 79
IterationMax property 79
IterationMaxChange property 79
Iterations

circular references and 79
maximum number allowed in worksheet 180

IterNext and IterStart 185
IterStart and IterNext 185

K
Keyboard commands 58

limiting user access to 85
Keywords, in functions 73

L
Landscape printing orientation 157
LaunchDesigner method 36
Launching the Workbook Designer 36
Layout page, in Chart Wizard 144
Left Align toolbar button 43
LEFT function 243
LEFTB function 244
LeftMargin property 154
Left-to-right printing 158
LeftToRight property 158
Legends, for charts 144
LEN function 244
LENB function 245
Limiting data entry 80–86
Line command (Insert menu) 40
Line feeds, cell entries and 65
LineColor property 135
Lines

as borders on graphical objects 134–135
creating 123–125
formatting 134–135
styles 134
tool for 124

LineStyle property 135
LineWeight property 135
List boxes. See Dropdown list boxes
List, in dropdown list box 135
LN function 245
Locking cells 81–82

displaying message 82
LOG function 246
LOG10 function 246
Logical property 52, 65
Logical values

default alignment of 107
entering 67

LogicalRC property 52, 65
LogicalSRC property 52
LOOKUP function 247
LOWER function 248

Index 305
M
Main toolbar 36
Margins 154
MATCH function 249
MAX function 250
MaxCol property 31, 56
MaxRow property 31, 56
Member variables, in Visual C++ 4–5
Memory

allocating 179
freeing 179
optimizing use of 177–180

Menus, in Workbook Designer 37–41
Merge and Center toolbar button 43
MergeCells property 109
Merging cells 109–110
MID function 251
MIDB function 252
MIN function 253
MinCol property 31
Minimal recalcuation 78
MinimalRecalc property 79
MinRow property 31
MINUTE function 253
MIRR function 254
MOD function 255
Mode property 126
MONTH function 255
Months, automatically entering names of 74
Mouse

actions of 57
drawing graphical objects 125
IntelliPoint mouse x
limiting access to certain actions 86
selecting graphical objects 129
setting mode of 126
with checkboxes and dropdown list boxes 138

MoveRange method 52, 93, 178
Moving

active cell 58
data

and optimizing performance 178
with drag-and drop 88
with dragging 57
with menu commands 91
with methods 92, 93

graphical objects 130–132
worksheet tabs 46

Multi-line data entry 58, 65, 108
preventing 85

N
N function 256
#N/A error 72
NA function 256
Name command (Insert menu) 40, 76
#NAME? error 72
Names

built-in 77
cell 76
column heading 57
constant value 76
defining 76
formula 76
graphical object 128
maximum length 180
maximum number, per workbook 180
range 76
row heading 57
top left corner 57
worksheet 55, 57
worksheet and workbook, in headers and footers 157

Navigating in worksheets 56–59
with keyboard commands 58
with mouse actions 57
with properties and methods 61

Nesting functions 73
New command (File menu) 37
New toolbar button 42
NextColPageBreak method 153
NextRowPageBreak method 153
NOT function 257
NOW function 78, 257
NPER function 258
NPV function 259
#NULL! error 72
#NUM! error 72
Number property 52, 65
NumberFormat property 52, 102
NumberFormatLocal property 52
Numbering, pages 155
NumberRC property 52, 65
Numbers

as currency 100
as dates 101
as entries 66
as fractions 100
as percentages 103
as percents 100
as times 101
in scientific notation 100, 103

NumberSRC property 52
NumSheets property 53, 54

306 Formula One ActiveX User’s Guide
O
ObjAddItem method 136
ObjAddSelection method 129
ObjBringToFront method 127, 128, 132
ObjCellCol property 139
ObjCellRow property 139
ObjCellType property 139
ObjClick event 128, 129
ObjCreate method 123, 124
ObjCreatePicture method 124, 126
ObjDblClick event 128, 129
ObjDeleteItem method 136
Object command (Format menu) 41, 127, 128, 133, 134,

136, 137, 139, 146, 147
Objects

Formula One 23–24
in Visual C++ 6

graphical (see graphical objects)
ObjFirstID method 127
ObjGetCell method 139
ObjGetItemCount method 136
ObjGetPos method 131, 132
ObjGetSelection method 127, 129
ObjGetSelectionCount method 130
ObjGotFocus event 128
ObjInsertItem method 136
ObjItem property 136
ObjItems property 136
ObjLostFocus event 128
ObjName property 128
ObjNameToID method 127
ObjNew method 123, 124, 141
ObjNewPicture method 124, 126
ObjNextID method 127
ObjPatternBG property 128, 133
ObjPatternFG property 128, 133
ObjPatternStyle property 128, 133
ObjPosToTwips method 132
ObjPosToTwipsEx method 132
ObjSelection property 130
ObjSendToBack method 127, 128, 132
ObjSetCell method 139
ObjSetPicture method 126
ObjSetPos method 131
ObjSetSelection method 129
ObjText property 137, 138
ObjValue property 138
ObjValueChanged event 128
ObjVisible property 135
ODBC 161–170

binding of worksheet columns 169
configuring, in PowerBuilder 10

ODBC (continued)
connecting to the data source 162
drivers 161
PREPARE statements 168, 170
setting up the data source 162

ODBCBindParameter method 167, 169, 170
ODBCBindParameterEx method 167, 169, 170
ODBCConnect method 162, 167
ODBCConnectEx method 162, 167
ODBCDisconnect method 170
ODBCError method 167, 170
ODBCErrorMsg property 167, 170
ODBCExecute method 167, 170
ODBCExecuteError event 168, 170
ODBCExecuteEx method 167, 170
ODBCNativeError property 167, 170
ODBCPrepare method 167, 168, 169, 170
ODBCPrepareEx method 167, 168, 169, 170
ODBCQuery method 164, 168
ODBCQueryEx method 164, 168
ODBCSQLState property 168, 170
ODD function 259
OFFSET function 78, 260
Open command (File menu) 37
Operators

formula 68
precedence of 69

Optimizing Formula One 177–180
Options command (Tools menu) 41, 78, 79
OptionsDlg method 75, 77, 79
OR function 261
Oval command (Insert menu) 40
Ovals

creating 123–125
tool for 124

Overlapping graphical objects 132–133

P
Page Break command (Insert menu) 40, 152
Page breaks, setting and removing 152–153
Page numbers 155

in headers and footers 157
Page Setup command (File menu) 38, 151, 152, 154, 155,

156, 157, 158
PagesTall property 158
PagesWide property 158
PaletteEntry property 48
Paper size 158
PaperSize property 158
Parameters passed by reference, in PowerBuilder 20
Parentheses, in functions 73
Paste command (Edit menu) 38

Index 307
Paste Special command (Edit menu) 38
with merged cells 110

Paste toolbar button 42
Pasting

data, with methods 92
merged cells 109

Patterns
for filling cells 118–119
for graphical objects 133–134

Percent toolbar button 44
Percentages, formatting numbers as 103
Percents, formatting numbers as 100
PI function 261
Picture objects 124, 125
PMT function 262
Point, as measure for line weight 134
PolyEditMode property 139
Polygon command (Insert menu) 40
Polygon point editing 124, 139
Polygon Points command (Edit menu) 38
Polygons

editing 139–140
tool for 125
tool for edit mode 124

Portrait printing orientation 157
PowerBuilder 9–20

and application templates 11
and Formula One, web page 9
and ODBC 10
errors in 20
syntax 19
tutorials for Formula One 10–18
working in 19–20
working with databases in 10–11, ??–14

PPMT function 263
PREPARE statements 168, 170
Print area 77
Print Area command (File menu) 38
Print command (File menu) 38, 149
Print preview 159–160

in Visual C++ 7
Print Preview command (File menu) 38, 159
Print Preview toolbar button 42
Print titles 77
Print Titles command (File menu) 38
Print toolbar button 42
PrintArea property 151
PrintAreaLocal property 151
PrintFooter property 156
PrintHeader property 156
Printing 149–160

from print preview screen 160
headers and footers 156–157

Printing (continued)
in Visual C++ 7
margins 154
page breaks, setting and removing 152–153
page numbers 155
page order 158
paper size 158
portrait or landscape 157
print area 150–151
print preview 159–160
row and column headings 159
scaling data 157
sizing data to fit pages 155
titles 151

PrintLandscape property 157
PrintPreviewDCEx method 7, 160
PrintPreviewEx method 160
PrintScale property 158
PrintTitles property 152
PrintTitlesLocal property 152
PRODUCT function 264
PROPER function 264
Properties command (Format menu) 41, 55, 56, 62, 82, 85
Properties command (Format Sheet menu) 86
Properties of Formula One

in PowerBuilder 19
in Visual Basic 9
in Visual C++ 8

Properties, entering data with 64
Protecting the worksheet 81–82
Protection command (Format menu) 41, 81
ProtectionDlg method 52
ProtectionHidden property 52, 81
ProtectionLocked property 52, 81
PV function 265

Q
Querying databases 164
QueryInterface 192

R
RAND function 78, 266
Ranges

building to optimize memory 177
copying data across 93
deleting 98
editing, using methods 92
filling 74
naming 76
references as function arguments 74

308 Formula One ActiveX User’s Guide
Ranges (continued)
references in formulas 69–71
selecting 57, 60
source, for charts 141
writing to file 34

RATE function 266
Read command (File menu) 37
Read method 20, 33
Read toolbar button 42
ReadEx method 20, 33
ReadFromBlob method 33
Reading

BLOBs 33
Excel-compatible files 32
Formula One files 32
HTML files 32
tabbed text files 32

Read-only, making workbook 80–81
Recalc command (Tools menu) 41
Recalc method 78
Recalculation

automatic workbook 77
circular references and 79
minimal 78
workbook 58, 77–79

Rectangle command (Insert menu) 40
Rectangles

creating 123–125
tool for 124

#REF! error 72
Reference operators (for cell ranges) 68
References to cells. See Cell references
Relative cell references 70

in validation rules 82
Remove Page Break command (Insert menu) 153
RemoveColPageBreak method 153
RemovePageBreak method 153
RemoveRowPageBreak method 153
Renaming worksheets 55
Repaint property 177
Repaint, disabling to optimize memory 177
Replace command (Edit menu) 39
Replace dialog box 94
REPLACE function 267
Replace method x, 95
REPLACEB function 269
ReplaceDlg method 95
REPT function 269
Retrieving data from databases 164
Right Align toolbar button 43
RIGHT function 270
RightMargin property 154
ROUND function 271

ROUNDUP function 273
Row Default Height command (Format menu) 40
ROW function 272, 273
Row headings

formatting 119
hiding 56
preventing changes to 82
preventing resizing of 86
printing 159
selecting 119
sizing 120
text of 120–121

Row Height command (Format menu) 40
Row Hide command (Format menu) 40
Row mode 62
Row property (F1FindReplaceInfo object) 95
Row Unhide command (Format menu) 40
RowHeadings property 159
RowHeight property 52, 114
RowHeightDlg method 52, 114
RowHidden property 114
RowMode property 62
Rows

applying number formats 101
building to optimize memory 177
deleting 98
freezing 115
headings (see row headings)
inserting 96
maximum height 180
preventing selection of 62
print titles and 151
selecting 61
selecting, with row mode 62
setting heights of 110–114

automatically 111, 112, 113
default 111
dialog box for 112

Rows command (Insert menu) 39
ROWS function 78, 274
RowText property 52, 121

S
Safe events, understanding 175
Save As command (File menu) 37
Save command (File menu) 37
Save toolbar button 42
SaveFileDlg method 33, 171
SaveFileDlgEx method 33, 171
Scale

for printing data 157
for viewing worksheets 56

Index 309
Scientific notation, formatting numbers as 100, 103
Scripts, in fonts 47, 107
Scroll lock key 59
Scrolling mode 57
SEARCH function 274
SEARCHB function 275
Searching for and replacing data 94
SECOND function 276
SelChange event 31
Select All Objects command (Edit menu) 38, 129
Selecting

cells 60–61
graphical objects 128–130
row and column headings 119
rows and columns 57, 61
user options for 62
using the mouse 57
with properties and methods 61
with the keyboard 58–59
with the mouse 60
worksheets 50–51, 57

Selection property 61
SelectionCount property 61
SelectionEx property 61
SelHdrCol property 119
SelHdrRow property 119
SelHdrTopLeft property 119
Send to Back command (Format menu) 41, 132
Serial number, for Formula One x, xi
Series labels, on charts 143
Set Print Area command (File menu) 150
Set Print Titles command (File menu) 152
SetAlignment method 52
SetBorder method 52
SetBorderEx method 52
SetCellFormat method 52, 81, 117
SetColWidth method 52, 114
SetColWidthAuto method 66, 114
SetColWidthTwips method 114
SetDefaultFont method 47
SetDefaultFontEx method 47
SetFont method 52
SetFontEx method 52, 107
SetHdrSelection method 119
SetIteration method 79
SetLineStyle method 128, 135
SetPageSetup method 52
SetPattern method 52, 118, 128, 133
SetProtection method 52
SetRowHeight method 52, 114
SetRowHeightAuto method 114
Setup.exe file xi
SetValidationRule method 52

Sheet limits 56
Sheet Properties command (Format menu) 41, 55, 56, 62,

82, 85, 86, 116
Sheet property 31, 46
Sheet Protection command (Format menu) 41, 81
SheetName property 55
SheetSelected property 51, 53, 54
ShowColHeading property 56
ShowEditBar property 46, 64, 81
ShowEditBarCellRef property 46, 64
ShowFormulas property 56, 72
ShowGridLines property 56
ShowHScrollBar property 57
ShowLockedCellsError property 82
ShowRowHeading property 56
ShowTabs property 31, 46
ShowTypeMarkers property 46, 177
ShowVScrollBar property 57
ShowZeroValues property 56
SIGN function 276
SIN function 277
SINH function 277
Sizing graphical objects 130–132
SLN function 278
Sort command (Edit menu) 38
Sort method 98
SortDlg method 98
Sorting data 98
Specifications 180
SQRT function 278
SSClearRange function call 98
SSDeleteRange function call 98
SSEditClear function call 98
Stacking, on charts 143
Standalone Workbook Designer 36
Standard Toolbar command (View menu) 39
StartCol property 131
StartRow property 131
Status Bar command (View menu) 39
STDEV function 279
STDEVP function 279
String 184
Strings, in formulas 68
Style page, in Chart Wizard 143
SUBSTITUTE function 280
SUM function 280
SUMIF function 281
SUMPRODUCT function 282
SUMSQ function 282
SYD function 283

310 Formula One ActiveX User’s Guide
T
T function 284
Tabbed text, reading and writing files 32
Tabs, worksheet

displaying 46
enlarging space for 49
hiding 31, 46

TAN function 284
TANH function 285
Technical specifications 180
Templates, for applications in PowerBuilder 11
Text

displayed next to check boxes 136
displayed on buttons 137
entering 67
obtaining formatted 101

TEXT function 285
Text operators 68
Text property 52, 65
TextRC property 52, 65
TextSRC property 52
Thread safety

and F1Functions 184
3D charts 143
Tidestone Technologies, Inc.

Case Tracking System xii
contact information xii
Europe office xiii
website 171

TIME function 286
Times

entering 67
formatting numbers as 101, 104
printing, in headers and footers 157

TIMEVALUE function 286
Title property 70
Titles, for charts 144
TODAY function 78, 287
Toggle Drawing Toolbar toolbar button 42
Toolbars 36, 42–44

docking 37
Tools menu, in Workbook Designer 41
TopLeftText property 52, 121
TopMargin property 154
Top-to-bottom printing 158
TRIM function 287
TRUE function 288
TrueType fonts 47, 106
TRUNC function 288
TTF16.h file 2
Tutorials, using PowerBuilder 10–18
2D charts 143

TYPE function 289
Type markers 46

U
Underline toolbar button 43
Unfreeze Panes command (Format menu) 41
Uniform Data Transfer 93
Updating database data 167
Upgrading 20
UPPER function 289
USDOLLAR function 290
Users

limiting access 46, 80–86
to cells 81–82
to certain keys 85
to changing row and column headings 82
to charts 146
to entering certain values 82
to entering formulas 85
to graphical objects 129
to mouse actions 86
to workbook areas 30
to workbooks 80–81

setting selection options for 62

V
Validating data 82
Validation rules 82
ValidationFailed event 84
ValidationRule property 84
ValidationRuleDlg method 52
ValidationRuleLocal property 84
ValidationRuleLocalRC property 84
ValidationRuleRC property 84
ValidationText property 84
VAlign property 52
#VALUE! error 72
VALUE function 291
VAR function 291
Variant 184
VARP function 292
VDB function 292
Versions of Formula One 21, 33
View menu, in Workbook Designer 39
View scale, for worksheets 56
Views

attaching 27, 30
information stored with 26
saving 32
working with 26

Index 311
ViewScale property 56
Visual Basic 8–9

adding the Formula One component 8–9
properties and methods, for Formula One 9

Visual basic
using add-ins in 183

Visual C++ 1–8
adding the Formula One component 3–6
Formula One objects in 6
handling Formula One events 7
printing and previewing in 7
properties and methods, for Formula One 6, 8
serializing the Formula One control in 7

VLOOKUP function 293

W
Web pages containing Formula One 173
WEEKDAY function 294
Weight, line 134
White space 177
Width command (Format menu) 112
Windows metafiles, importing 125
Windows Registration Database xi
WordWrap property 52, 108
Workbook Designer 25, 35–44

Edit menu commands 38
File menu commands 37
Format menu commands 40
Insert menu commands 39
keyboard commands 58
launching 36
menus 37–41
mouse actions 57
standalone 36
toolbars 42
Tools menu commands 41
View menu commands 39

Workbooks
attaching views to 26, 30
calculating 77–79

automatically 77
circular references and 79

deleting worksheets from 54
denying user access to 80–81
description of 24
display options 30, 45–48
index sheet list in 50, 53
inserting worksheets in 49, 52
reading 32
retrieving, from database tables 33
selecting worksheets in 50–51
writing 32

Workbooks (continued)
See also F1Book API object

Worksheet command (Insert menu) 39, 53
Worksheet functions. See Functions
Worksheets

active 50
building to optimize memory 177
cells in

borders for 116–118
clearing 98
data alignment in 107–108
deleting 98
inserting 96
locking 81–82

data entry of 63–65
constant values in 66–67
formulas in 67–72
limiting 80–86
multi-line 65

data types in 66
deleting 54
display options 55–56
external references in 71
formatting 99–108
index list of 31, 50, 53, 71
inserting 49, 52
limiting rows and columns displayed 55–56
maximum size 180
naming 55
navigating in 56–59
performing tasks on multiple 50
preventing selection of 62
printing 149
referencing in cell references 70
selecting 50–51
selection in

cells 60–61
rows and columns 61

sorting data in 98
tabs on 46
working with a group 51

Wrapper classes, in Visual C++ 6
Wrapping text 108
Write command (File menu) 37
Write method 33
WriteEx method 33
WriteRange method 34
WriteRangeEx method 7, 34
WriteToBlob method 33
WriteToBlobEx method 33
Writing

a range of cell data 34
BLOBs 33

Writing (continued)
Excel-compatible files 32
Formula One files 32
HTML files 32, 171
tabbed text files 32

X
X axis labels, on charts 144

Y
Y axis labels, on charts 144
YEAR function 295

Z
Z axis labels, on charts 144
Zero values, displaying or hiding 56
Zooming in and out

in printing worksheets 157
in viewing worksheets 56

	Formula One�ActiveX
	Contents
	Overview
	New Features in Formula One
	Version 6.0
	Version 6.1

	Installation
	Installing the Product
	What Does The Installation Program Do?
	After Installation
	If you Experience Installation Problems
	Technical Support
	Documentation Conventions

	Getting Started
	Adding the ActiveX Control to Your Application
	Getting Started in Visual C++
	Creating a Dialog, CFormView, or CView-Based Application
	Creating Dialog Box-Based Applications
	Creating CFormView-Based Applications
	Creating CView-Based Applications
	Adding the Formula One Component to Your Project
	Adding the Component to Your Dialog or CFormView
	Assigning Member Variables

	Adding the Formula One Component to Your CView
	Working With Top-Level Properties and Methods in Visual C++
	Accessing Formula One Objects in Visual C++
	Handling Events in your Dialog or CFormView in Visual C++
	Handling Events in your CView in Visual C++
	Handling Printing and Previewing in Visual C++
	Serializing the Control in Visual C++
	Setting Properties in Visual C++
	Setting Properties for a Control on a CView

	Getting Started in Visual Basic
	Adding the Component to your Visual Basic 5.0 or 6.0 Project
	Setting Properties in Visual Basic 5.0 or 6.0

	Getting Started in PowerBuilder
	OLE 2 Presentation Style
	Database Preparation
	Configuring the ODBC
	Setting the Database Profile
	Creating an Application via a PowerBuilder Generated Application Template
	Adding the ActiveX Control to the PowerBuilder DataWindow
	Connecting the DataWindow Object
	Creating a Transaction Object for the Application Open Event

	Uniform Data Transfer Method
	Creating a New Application Window
	Modifying the Application Open Event
	Placing the Control in the Application Window
	Creating the DataWindow Object
	Connecting the Control
	The Constructor Event

	Standalone Worksheet Method
	Using Formula One as a Worksheet in PowerBuilder
	Placing the Formula One Control in the Application Window

	Working in PowerBuilder
	Calling ActiveX Properties and Methods in PowerBuilder
	Converting General Syntax into PowerBuilder Syntax
	Trapping Errors in PowerBuilder
	Handling Method Parameters Passed By Reference

	Upgrading Formula One

	Introducing Formula One
	Working with API Objects
	Understanding Workbooks and Worksheets
	Introducing the Workbook Designer
	Using Workbooks, Views, and Invisible Workbooks
	Working With the F1Book Control
	Working With the F1BookView Control
	Using Properties and Methods with F1BookView

	Using Attach Methods
	Controlling the Display of Workbook Areas
	Saving View or Invisible Workbook Information

	Reading and Writing Files
	Using BLOB access
	Writing out a Range of Cell Data

	Overview of the Workbook Designer
	Launching the Workbook Designer
	Docking the Toolbars
	Using the Workbook Designer Menus
	File Menu
	Edit Menu
	View Menu
	Insert Menu
	Format Menu
	Tools Menu

	Using the Workbook Designer Toolbars
	Standard Toolbar
	Formatting Toolbar

	Workbook Fundamentals
	Setting up Workbooks
	Displaying Parts of the Workbook Designer
	Setting the Default Font

	Setting Up the Color Palette
	Manipulating Worksheets
	Inserting Worksheets
	Sheet Index List

	Selecting Worksheets
	Working with a Group of Worksheets
	Inserting Multiple Worksheets
	Deleting Worksheets
	Renaming Worksheets
	Setting Display Options for Worksheets

	Navigating Through Worksheets
	Navigating with the Mouse
	Navigating with the Keyboard

	Selecting Cells
	Selecting Cells with the Mouse
	Selecting Cells with Properties and Methods

	Selecting Rows and Columns
	Setting Selection Options

	Working With Data
	Understanding Worksheet Data Entry
	Adding the Formula Bar
	Entering Data with Properties
	Entering Multi-Line Data

	Understanding Worksheet Data Types
	Entering Constant Values
	Entering Formulas
	Using Formula Operators
	Using Operator Precedence

	Understanding Cell References
	Absolute and Relative References
	References to Other Worksheets
	References to Multiple Worksheets
	External References
	Automatically Entering Cell References

	Understanding Worksheet Errors
	Displaying Formulas

	Built-In Worksheet Functions
	Understanding Functions
	Entering Functions
	Nesting Functions
	Entering Arguments
	Syntax Errors

	Using Autofill Lists
	Adding Autofill Lists
	Deleting Autofill Lists

	Using Names
	Calculating Worksheets
	Setting Automatic Recalculation
	Setting Minimal Recalculation
	Solving Circular References

	Limiting Data Entry
	Denying Access to a Workbook
	Denying Access to a Worksheet
	Denying Access to Certain Cells
	Working With Locked Cells

	Denying Access to Row and Column Headings
	Restricting Cell Data to Certain Values
	The Validation Formula

	Denying Entry of Formulas in a Worksheet
	Restricting the Use of Certain Keys
	Restricting the Use of Certain Mouse Actions

	Editing Worksheets
	Copying, Moving, and Pasting Selections
	Using Dragging to Move, Copy, and Paste Selections
	Copying a Selection Using Dragging
	Moving or Copying a Selection Using Drag-and-Drop
	Using Drag-and-Drop with Other Applications

	Using Menu Commands to Move, Copy, and Paste Selections
	Using Methods to Edit, Move, Copy, and Paste Selections
	Using Methods to Edit Ranges
	Using Methods to Copy Selections Across
	Using Methods to Move Data
	Using Methods to Copy Data Between Worksheets and Arrays

	Transferring Data via Uniform Data Transfer

	Finding and Replacing Data in Formula One
	Inserting Cells, Rows, and Columns
	Clearing and Deleting Cells, Rows, and Columns
	Sorting Data in Worksheets

	Formatting Worksheets
	Using Built-in Number Formats
	Applying Number Formats to Rows and Columns
	Obtaining Formatted Text Programmatically

	Creating Custom Number Formats
	Formatting Fonts
	Aligning Data
	Merging Cells
	Cutting, Copying, and Pasting Merged Cells
	Pasting the entire merged cell range
	Paste Special with merged cells

	Changing Row Height and Column Width
	Setting Default Row Height and Width
	Sizing Rows and Columns Using Menu Commands
	Sizing Rows and Columns Using Click and Drag Actions
	Sizing Rows and Columns with Properties and Methods

	Freezing Horizontal and Vertical Panes
	Setting Cell Border and Fill Formats
	Setting Cell Borders
	Setting Cell Fill Colors and Patterns

	Formatting Row and Column Headings
	Selecting Row and Column Heading Areas
	Sizing Row and Column Headings
	Setting Row and Column Heading Text

	Working With Graphical Objects
	Creating Graphical Objects
	Creating Graphical Objects with Methods
	Interactively Drawing Graphical Objects

	Picture Objects
	Setting Mouse Mode

	Identifying Graphical Objects
	Naming Graphical Objects

	Selecting Graphical Objects
	Interactively Selecting Graphical Objects
	Limiting Interactive Graphical Object Selection

	Selecting Graphical Objects Programmatically

	Moving, Sizing, and Arranging Graphical Objects
	Interactively Moving and Sizing Graphical Objects
	Positioning Graphical Objects Programmatically
	Determining Graphical Object Position and Size
	Arranging Overlapping Graphical Objects
	Arranging Graphical Object Order

	Formatting Graphical Objects
	Formatting Colors and Patterns
	Formatting Lines (Borders) on Graphical Objects
	Showing and Hiding Graphical Objects
	Formatting Dropdown List Boxes
	Formatting Check Boxes
	Formatting Buttons

	Selecting Check Box and Dropdown List Box Items
	Setting Values Interactively
	Setting Values Programmatically
	Setting Values by Cell Reference

	Editing Polygons

	Working With Chart Objects
	Creating Charts
	Using the Chart Wizard
	Navigating in the Chart Wizard
	Using the Gallery Page
	Using the Style Page
	Using the Layout Page
	Using the Axes Page

	Chart Options
	Referencing Data on Another Worksheet

	Printing Worksheets
	Printing Worksheets
	Specifying Print Areas
	Specifying Print Titles
	Specifying Page Breaks
	Specifying Margins
	Setting Page Numbering
	Specifying Headers and Footers
	Formatting Codes for Headers and Footers

	Setting Page Orientation
	Setting Up Scaling for Printing
	Specifying Page Printing Order
	Choosing Paper Size
	Specifying Miscellaneous Printing Options
	Previewing Your Printout

	Working With Databases
	Overview of Formula One Connections
	Installing the ODBC Drivers
	Setting up a Data Source
	Connecting to the Data Source

	Querying the Data Source
	Updating or Inserting Data
	Using PREPARE Statements
	Binding Worksheet Columns
	Executing PREPARE Statements
	Disconnecting from the Data Source

	Using Formula One With the Internet
	Writing out a Worksheet File in HTML Format
	Embedding Formula One Data in an HTML file
	Utilizing the InsertHTML Method
	Creating an Anchor in your HTML Source File
	HTML Document Design

	Introducing Internet Application Development
	Viewing a Web Page Containing Formula One
	Adding Formula One to your Web Page
	Using Methods and Events for Internet Development
	Understanding Formula One’s IObjectSafety Support
	Understanding Formula One’s Safe Events

	Performance Tuning and Specifications
	Using Performance Tuning
	Optimizing Formula One
	Understanding Formula One’s Data Structure
	Allocating and Freeing Memory
	Filling Worksheets with Data
	Using Technical Specifications

	Creating Add-In Functions
	Formula One ActiveX Add-Ins in Visual Basic
	General Design Principles
	Thread Safety
	Add-In Function Requirements
	F1AddInArray
	Example Code
	F1AddInArrayEx

	Visual Basic Example Add-Ins

	Formula One C++ Add-In API
	How Add-In Functions Are Declared
	How Add-In Functions Are Exposed to Formula One
	F1AddinInit
	F1AddInRegisterInfoProc
	F1AddInRegisterFunctionProc

	How Arguments and Return Values Are Passed
	IF1AddInArray interface

	IF1AddInArrayEx interface
	IF1AddInArrayEx::IterGetValue IF1AddInArrayEx::IterGetValueEx

	Formula Evaluation Errors
	C++ Example Add-In

	A-Z Worksheet Function Reference
	ABS
	ACOS
	ACOSH
	ADDRESS
	AND
	ASC
	ASIN
	ASINH
	ATAN
	ATAN2
	ATANH
	AVERAGE
	CALL
	CEILING
	CHAR
	CHOOSE
	CLEAN
	CODE
	COLUMN
	COLUMNS
	CONCATENATE
	COS
	COSH
	COUNT
	COUNTA
	COUNTIF
	DATE
	DATEVALUE
	DAY
	DAYS360
	DB
	DBCS
	DDB
	DOLLAR
	ERROR.TYPE
	EVEN
	EXACT
	EXP
	FACT
	FALSE
	FIND
	FINDB
	FIXED
	FLOOR
	FV
	HLOOKUP
	HOUR
	IF
	INDEX
	INDIRECT
	INT
	IPMT
	IRR
	ISBLANK
	ISERR
	ISERROR
	ISLOGICAL
	ISNA
	ISNONTEXT
	ISNUMBER
	ISREF
	ISTEXT
	LEFT
	LEFTB
	LEN
	LENB
	LN
	LOG
	LOG10
	LOOKUP
	LOWER
	MATCH
	MAX
	MID
	MIDB
	MIN
	MINUTE
	MIRR
	MOD
	MONTH
	N
	NA
	NOT
	NOW
	NPER
	NPV
	ODD
	OFFSET
	OR
	PI
	PMT
	PPMT
	PRODUCT
	PROPER
	PV
	RAND
	RATE
	REGISTER.ID
	REPLACE
	REPLACEB
	REPT
	RIGHT
	RIGHTB
	ROUND
	ROUNDDOWN
	ROUNDUP
	ROW
	ROWS
	SEARCH
	SEARCHB
	SECOND
	SIGN
	SIN
	SINH
	SLN
	SQRT
	STDEV
	STDEVP
	SUBSTITUTE
	SUM
	SUMIF
	SUMPRODUCT
	SUMSQ
	SYD
	T
	TAN
	TANH
	TEXT
	TIME
	TIMEVALUE
	TODAY
	TRIM
	TRUE
	TRUNC
	TYPE
	UPPER
	USDOLLAR
	VALUE
	VAR
	VARP
	VDB
	VLOOKUP
	WEEKDAY
	YEAR

	Index

