SCROLL.DOC

This project shows how to create a graph with history - a scrollbar is added to allow the user to move through a line chart of a large dataset. Some datasets may be too large to be effectively shown in entirety. You may want to view a few data points to look at values or many data points to look for trends. This project presents one solution to that challenge.

Project Overview

This project presents the Dow Jones daily average from 5/5/80 to 11/20/92 - 3179 data points. This is obviously too large a dataset to be viewed effectively in its entirity. A scrollbar is placed below the chart and the user manipulates it to scroll through the data set. The scroll arrow allows moving through the data one day at a time. You can set the number of days shown via a menu selection which also sets the scrollbar's large scroll increment so you can click in the scroll bar to page through many days at a time. The leading edge of the line graph is marked with a date. A label below the title shows the value at that date. If you click on a datapoint, the label will reflect the date and value at that datapoint.

Implementation

The data is stored in a file named DJAVE.TXT. This data consists of two columns: the first is a spreadsheet type serial number for a date and the second is the DJ average for that date. Their are three procedures of interest in this project.

Form Load

The Form Load event reads data from DJAVE.TXT into the global array DJData. It also sets up physical attributes of the form, the large scroll increment of the scrollbar, and a little chart formatting. Most of the chart format was established during design time and is thus stored in the .FRX file. The quickest way to format your chart is to place it in edit mode (right click on the chart and select Edit). This is called In Place Visual Editing. It allows you to get to the First Impression popup menu with one click. The next thing is to use the Chart Wizard to set the general format of your chart (right click on the chart and select Wizard...). Often you can get up and running after this step and refine your chart after you know a bit more about the project.

If you set a bunch of options and decide they aren't what you want, show the chart popup menu and select General..., click on the Options tab and then click the reset button. You can then start over with the Wizard or go off on your own. If you want more realistic data, right click on the chart and select Edit Chart Data... The DataGrid Editor pops up and you can set the DataGrid size, the number of row and column labels, and the data in the grid.

mnuSetDaysVisible

The next tidbit of code sets the number of rows in the DataGrid (number of days visible) and the large scroll increment on the scrollbar. The DataGrid row count is tied to the large scroll increment so you can page through the data by clicking in the scrollbar. This procedure presents the user with a request for number of days to show and doesn't let them get away until they have entered a valid value. Note that the larger this value is, the slower the chart will redraw. A large value is good for paging through the data. A small value is good for scrolling through the data. The last thing to do in this procedure is show the new chart (since the number of days has probably changed).

ShowView

This procedure has the most interesting job - it fills the DataGrid and formats the chart. It takes a single argument (startingAt) which is the current value of the scrollbar. The chart's RowCount is set to this value in case this procedure was called from mnuSetDaysVisible.

Next on the agenda is to copy data from the global DJData into an array suitable for use with the chart: a 2D array of doubles. Note that VB interprets this type a Variant and reports this in th eobject browser. This is not correct. While copying data, we keep track of the min and max for the data. This is so we can later set the Y axis scale manually. If you use auto scale on this type of chart, the minimum will be zero which would make the detail of the chart difficult to discern. The CopyDataFromArray method copies the data from our temporary array to the chart's DataGrid. It is much faster than setting the data point by point, especially as the dataset grows.

Now on to formatting the chart. The Y axis scale is set as mentioned above. For this scale we choose a max 20 above the data maximum and a min 20 below the minimum. The axis end points are rounded to the nearest ten. One trick used here was to use a custom format on the Y axis of #,##0 which will truncate any fractional part of the axis scale. The endpoints have been rounded to the nearest 10 but the number on each major division may have a long fractional part. We don't want the user to worry about that level of detail.

Part of the chart design goal was to present a simple and clean plot so that you could easily view trends. Because there are no distracting details the use is drawn to the single line graph and a kind of order of magnitude Y axis scale. If they want a value at a particular point they can scroll till it is at the right edge of the plot or click on the datapoint. We avoid grid lines, plot base and too many labels so you are focused on the line.

A single label is used at the right edge of the plot that marks the date of the last datapoint. The next section of code removes all the old labels and sets the new datapoint label. The very handy For Each construct is used to make iteration simple and clean. You can use for each with any collection of objects like SeriesCollection and DataPoints. Another handy construct, the With statement, is used here. One penalty of using an object hierarchy is that traversing it to its depths can be time consuming. Each dot in the object qualification is a pointer reference so if a deeply nested object is in the bottom of a nested For loop, you can get quite a time penalty. For example, in the code presented, the ResetCustomLabel method is at depth 5 in the object hierarchy. If we used code like

 For i = 1 to 100

 VtChart1.Plot.SeriesCollection.Item(1).DataPoints.Item(i).DataPointLabel.ResetCustom

 Next i

there would be about 700 pointer walks. Contrast that with the code used in the project

 With VtChart1.Plot.SeriesCollection.Item(1)

 For Each DataPoint In .DataPoints

 DataPoint.DataPointLabel.ResetCustomLabel

 Next DataPoint

 End With

which has about 200. Yes this is a gross measure because of caching and such, but it is indicative of the performance increase you can attain. Don't believe me? Put the above code in the code profiler and see for yourself. If you haven't tried the code profiler yet, do. It is an extremely useful tool and well worth the time investment.

Last on the list of duties for this procedure is to set the DataPointLabel for the last point in the series and then show information for that point.

Alternate Implementation

Replacing all the data in the DataGrid for each scroll event can be time consuming if you have a large DataGrid size. An alternate implementation can eliminate the need for the DJData array and provide for some other interesting effects.

The method is to load all the data into the chart as seperate series. In the above implementation, all data was in a single series that could be viewed as a column in a spreadsheet. This implementation puts the data in a single row of a spreadsheet - you set your column count to be large and your row count to be 1. In First Impression, you have the option of excluding a series from the plot. The central idea is to exclude all series except for the few that you want to show. Using a scrollbar, you would include only the series that are in the current view and exclude all others. This saves you from copying data to the temporary array and then into the DataGrid. You might also choose this method because you can set many attributes for a series than you can for a datapoint. For example, you could set each series color based on the value of the one datapoint in that series.

